Skip to main content

Advertisement

Log in

Poly(Lactide-co-Glycolide) Nanocapsules Containing Benzocaine: Influence of the Composition of the Oily Nucleus on Physico-Chemical Properties and Anesthetic Activity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The aim of this work was to investigate the influence of the oily nucleus composition on physico-chemical properties and anesthetic activity of poly (lactide-co-glycolide) nanocapsules with benzocaine.

Methods

Nanocapsules containing benzocaine were prepared with three different oily nucleus composition and characterized by mean diameter, polydispersivity, zeta potential, pH and stability were investigated as a function of time. In vitro release kinetics were performed in a system with two compartments separated by a cellulose membrane. Intensity and duration of analgesia were evaluated in rats by sciatic nerve blockade.

Results

The greatest stability, slower release profile and improvement in the local anesthetic activity of BZC were obtained with the formulation using USP mineral oil as component.

Conclusions

Results from our study provide useful perspectives on selection of the primary materials needed to produce suspensions of polymeric nanocapsules able to act as carriers of BZC, with potential future application in the treatment of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Soppimath KS, Aminabhavi TM, KulkarnI AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.

    Article  PubMed  CAS  Google Scholar 

  2. Nurkeeva ZS, Mun GA, Khutoryanskiy VV, Bitekenova AB, Dzhusupbekova AB. Polymeric complexes of lidocaine hydrochloride with poly (acrylic acid) and poly (2-hydroxyethyl vinyl ether). J Biomater Sci Polym. 2002;13:759–68.

    Article  CAS  Google Scholar 

  3. Schaffazick SR, Guterres SS, Freitas LL, Pohlmann AR. Caracterização e estabilidade fisico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quim Nova. 2003;26:726–37.

    Article  CAS  Google Scholar 

  4. Shenoy DB, Amiji MM. Poly (ethylene oxide)-modified poly (ε-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm. 2005;293:261–70.

    Article  PubMed  CAS  Google Scholar 

  5. Mohanraj VJ, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5:561–73.

    Google Scholar 

  6. Anton N, Benoit J-P, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release. 2008;128:185–99.

    Article  PubMed  CAS  Google Scholar 

  7. Mora-Huertas CE, Fessi H, Elaissari A. Polymer based nanocapsules for drug delivery. Int J Pharm. 2010;385:113–42.

    Article  PubMed  CAS  Google Scholar 

  8. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: NBM. 2006;2:8–20.

    Google Scholar 

  9. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.

    Article  PubMed  CAS  Google Scholar 

  10. Butterworth JF, Strichartz GR. Molecular mechanisms of local anesthesia: a review. Anesthesiol. 1990;72:711–34.

    Article  CAS  Google Scholar 

  11. Fraceto LF, Oyama Jr S, Nakaie CR, Spisni A, de Paula E, Pertinhez TA. Interaction of local anesthetics with a peptide encompassing the IV/S4-S5 linker of the Na+ channel. Biophys Chem. 2006;20:29–39.

    Article  Google Scholar 

  12. de Araújo DR, Tsuneda SS, Cereda CMS, Carvalho FGF, Preté PSC, Fernandes SA, et al. Development and pharmacological evaluation of ropivacaine-2-hydroxypropyl-beta-cyclodextrin inclusion complex. Eur J Pharm Sci. 2008;33:60–71.

    PubMed  Google Scholar 

  13. de Paula E, Jarrel HC, Schreier S, Fraceto LF. Preferential location of lidocaine and etidocaine in lecithin bilayers as determined by EPR, fluorescence and 2H-NMR. Biophys Chem. 2008;132:47–54.

    Article  PubMed  Google Scholar 

  14. de Paula E, Cereda CMS, Tófoli GR, Franz-Montan M, Fraceto LF, de Araújo DR. Drug delivery systems for local anesthetics. Recent Pat Drug Deliv Formul. 2010;4:23–34.

    Article  PubMed  Google Scholar 

  15. de Jong RH. Local anesthetics. Springfield: C. C. Thomas; 1994.

    Google Scholar 

  16. Coleman MD, Coleman NA. Drug-induced methaemoglobinaemia. Drug Saf. 1996;14:394–405.

    Article  PubMed  CAS  Google Scholar 

  17. So T, Farrington E. Topical benzocaine-induced methemoglobinemia in the pediatric population. J Pediatr Health Care. 2008;22:335–9.

    Article  PubMed  Google Scholar 

  18. Ellis BF, Seiler JG, Palmore MM. Methemoglobinemia: a complication after fiberoptic orotracheal intubation with benzocaine spray. A case report. J Bone Joint Surg Am. 1995;77:937–9.

    PubMed  CAS  Google Scholar 

  19. Pinto LMA, Yokaichiya DK, Fraceto LF, de Paula E. Interaction of benzocaine with model membranes. Biophys Chem. 2000;87:213–23.

    Article  PubMed  CAS  Google Scholar 

  20. Kuzma PJ, Kline MD, Calkins MD, Staats PS. Progress in the development of ultra-long-acting local anesthetics. Reg Anesth Pain Med. 1997;22:543–51.

    CAS  Google Scholar 

  21. de Araújo DR, Pinto LMA, Braga AFA, de Paula E. Formulações de anestésicos locais de liberação controlada: aplicações terapêuticas. Rev Bras Anestesiol. 2003;53:663–71.

    Article  PubMed  Google Scholar 

  22. Gorner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E. Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. J Control Release. 1999;57:259–68.

    Article  PubMed  CAS  Google Scholar 

  23. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57:171–85.

    Article  PubMed  CAS  Google Scholar 

  24. Polakovic M, Gorner T, Gref R, Dellacherie E. Lidocaine loaded biodegradable nanospheres II: Modelling of drug release. J Control Release. 1999;60:169–77.

    Article  PubMed  CAS  Google Scholar 

  25. Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, et al. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int J Pharm. 2000;199:95–110.

    Article  PubMed  CAS  Google Scholar 

  26. Dollo G, Le Corre P, Chevanne F, Le Verge R. Inclusion complexation of amide-type local anesthetics with β-cyclodextrin and derivates. II. Evaluation of affinity constants and in vitro transfer rate constants. Int J Pharm. 1996;136:165–74.

    Article  CAS  Google Scholar 

  27. Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. Pharm Sci. 1997;86:147–62.

    Article  CAS  Google Scholar 

  28. Loftsson T, Másson M. Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm. 2001;225:15–30.

    Article  PubMed  CAS  Google Scholar 

  29. Oliveira AG, Scarpa MV, Correa MA, Cera LFR, Formariz TP. Microemulsões: estrutura e aplicações como sistema de liberação de fármacos. Quim Nova. 2004;27:131–8.

    Article  Google Scholar 

  30. Pinto LMA, Fraceto LF, Santana MHA, Pertinhez TA, Junior SO, de Paula E. Physicochemical characterization of benzocaine-β-cyclodextrin inclusion complexes. J Pharm Biomed Anal. 2005;39:956–63.

    Article  PubMed  CAS  Google Scholar 

  31. de Araújo DR, Braga AFA, Moraes CM, Fraceto LF, de Paula E. Mistura com excesso enantiomérico de 50% (S75-R25) de bupivacaína complexada com ciclodextrinas e anestesia por via subaracnóidea em ratos. Rev Bras Anestesiol. 2006;56:495–506.

    PubMed  Google Scholar 

  32. Moraes CM, Abrami P, de Araújo DR, Braga AFA, Issa MG, Ferraz HG, et al. Characterization of lidocaine:hydroxypropyl-β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem. 2007;57:313–6.

    Article  CAS  Google Scholar 

  33. Moraes CM, Abrami P, de Paula E, Braga AFA, Fraceto LF. HPLC and solubility study of interaction between S (−) bupivacaine and hydroxypropyl-β-cyclodextrin. Int J Pharm. 2007;331:99–106.

    Article  PubMed  CAS  Google Scholar 

  34. Moraes CM, Abrami P, de Paula E, Andreo-Filho N, Fraceto LF. Preparo e caracterização físico-química de complexos de inclusão entre anestésicos locais e hidroxipropil-β-ciclodextrina. Quim Nova. 2007;30:777–84.

    Article  CAS  Google Scholar 

  35. Le Guévello P, Le Corre P, Chevanne F, Le Verge R. High-performance liquid chromatographic determination of bupivacaine in plasma samples for biopharmaceutical studies and applications to seven other local anesthetics. J Chromatogr. 1993;622:284–90.

    Article  PubMed  Google Scholar 

  36. Grant GJ, Bansinath M. Liposomal delivery systems for local anesthetics. Reg Anesth Pain Med. 2001;26:61–3.

    PubMed  CAS  Google Scholar 

  37. Grant SA. The Holy Grail: long-acting local anesthetics and liposomes. Best Pract Res Clin Anaesth. 2002;16:345–52.

    Article  CAS  Google Scholar 

  38. Fraceto LF, Pinto LMA, Franzoni L, Braga AC, Spisni A, Schreier S, et al. Spectroscopic evidence for a preferential location of lidocaine inside phospholipid bilayers. Biophys Chemist. 2002;99:229–43.

    Article  CAS  Google Scholar 

  39. de Araújo DR, Cereda CMS, Brunetto GB, Pinto LMA, Santana MHA, de Paula E. Encapsulation of mepivacaine prolongs the analgesia provided by sciatic nerve blockade in mice. Can J Anaesth. 2004;51:566–72.

    Article  PubMed  Google Scholar 

  40. de Araújo DR, Cereda CMS, Brunetto GB, Vomero VU, Pierucci A, Santo Neto H, et al. Pharmacological and local toxicity studies of a liposomal formulation for the novel local. J Pharm Pharmacol. 2008b;60:1449–57.

    Article  PubMed  Google Scholar 

  41. Cereda CMS, de Araújo DR, Brunetto GB, de Paula E. Liposomal prilocaine: preparation, characterization and in vivo evaluation. J Pharm Pharmacol Sci. 2004;7:235–40.

    CAS  Google Scholar 

  42. Colombo G, Padera R, Langer R, Kohane DS. Prolonged duration anesthesia with lipid-protein-sugar particles containing bupivacaine and dexamethasone. J Biomed Mater Res A. 2005;75:458–64.

    PubMed  Google Scholar 

  43. Rose JS, Neal JM, Kopacz DJ. Extended-duration analgesia: update on microspheres and liposomes. Reg Anesth Pain Med. 2005;30:275–85.

    PubMed  CAS  Google Scholar 

  44. Moraes CM, de Matos AP, de Paula E, Rosa AH, Fraceto LF. Benzocaine loaded biodegradable poly-(d, l-lactide-co-glycolide) nanocapsules: factorial design and characterization. Mater Sci Eng B. 2009;165:243–6.

    Article  CAS  Google Scholar 

  45. Grillo R, Melo NFS, de Araújo DR, de Paula E, Dias Filho NL, Rosa AH, et al. Validation of an HPLC method for quantitative determination of benzocaine in PHBV-microparticles and PLA-nanoparticles. Lat Am J Pharm. 2009;28:393–9.

    CAS  Google Scholar 

  46. Melo NFS, Grillo R, Rosa AH, Dias Filho NL, de Paula E, de Araújo DR, et al. Desenvolvimento e caracterização de nanocápsulas de poli(L-lactideo) contendo benzocaína. Quim Nova. 2010;33:65–9.

    Article  Google Scholar 

  47. Kranz H, Bodmeier R. Structure formation and characterization of injectable drug loaded biodegradable devices: In situ implants versus in situ microparticles. Eur J Pharm Sci. 2008;34:164–72.

    Article  PubMed  CAS  Google Scholar 

  48. Holgado MA, Arias JL, Cózar MJ, Alvarez-Fuentes J, Ganan-Calvo AM, Fernandez-Arevalo M. Synthesis of lidocaine-loaded PLGA microparticles by flow focusing effects on drug loading and release properties. Int J Pharm. 2008;358:27–35.

    Article  PubMed  CAS  Google Scholar 

  49. Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280:241–51.

    Article  PubMed  CAS  Google Scholar 

  50. Morales MM. Terapias Avançadas. Rio de Janeiro: Editora Atheneu; 2007.

    Google Scholar 

  51. Losa C, Marchal-Heussler L, Orallo F, Vila Jato JL, Alonso MJ. Design of new formulations for topical ocular administration: Polymeric nanocapsules containing metipranolol. Pharm Res. 1993;10:80–7.

    Article  PubMed  CAS  Google Scholar 

  52. Grillo R, Melo NFS, de Araújo DR, de Paula E, Rosa AH, Fraceto LF. Polymeric alginate nanoparticles containing the local anesthetic bupivacaine. J Drug Target. 2010;18:688–99.

    Article  PubMed  CAS  Google Scholar 

  53. Fessi H, Puiseiux F, Devissaguet J-P, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:1–4.

    Article  Google Scholar 

  54. Dearden JC, Bresnen GM. The measure of partition coefficients. Quant Struct Act Relat. 1988;7:133–44.

    Article  CAS  Google Scholar 

  55. Malheiros SVP, Pinto LMA, Gottardo L, Yokaichiya D, Fraceto LF, Meirelles NC, et al. A new look at hemolytic effect of local anesthetics, considering their real membrane/water partitioning at pH 7,4. Biophys Chem. 2004;110:213–21.

    Article  PubMed  CAS  Google Scholar 

  56. Gamisans F, Lacoulonche F, Chauvet A, Espina M, Garcia ML, Egea MA. Flurbiprofen-loaded nanospheres:analysis of the matrix structure by thermal methods. Int J Pharm. 1999;179:37–48.

    Article  PubMed  CAS  Google Scholar 

  57. Grillo R, Pereira AES, de Melo NFS, Porto RM, Feitosa LO, Tonello PS, et al. Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater. 2011;186:1645–51.

    Article  PubMed  CAS  Google Scholar 

  58. Venturini CG, Jager E, Oliveira CP, Bernardi A, Battastini AMO, Guterres SS, et al. Formulation of lipid core nanocapsules. Colloid Surf A Physicochem Eng Asp. 2011;375:200–8.

    Article  CAS  Google Scholar 

  59. Paavola A, Yliruusi J, Kajimoto Y, Kalso E, Wahlström T, Rosenberg P. Controlled release of lidocaine from injectable gels and efficacy in rat sciatic nerve block. Pharm Res. 1995;12:1997–2002.

    Article  PubMed  CAS  Google Scholar 

  60. Hariharam D, Peppas NA, Bettini R, Colombo P. Mathematical analysis of drug delivery swellable systems with partial physical restrictions or impermeable coatings. Int J Pharm. 1994;112:47–54.

    Article  Google Scholar 

  61. Colombo P, Bettini R, Massimo G, Catellani PL, Santi P. Peppas NA Drug diffusion front movement is important in drug release control from swellable matrix tablets. J Pharm Sci. 1995;84:991–7.

    Article  PubMed  CAS  Google Scholar 

  62. Ferrero C, Muñoz-Ruiz A, Jiménezcastellanos MR. Fronts movements a useful tool for hydrophilic matrix release mechanism elucidation. Int J Pharm. 2000;202:21–8.

    Article  PubMed  CAS  Google Scholar 

  63. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  PubMed  CAS  Google Scholar 

  64. Leszczynska K, Kau ST. A sciatic blockade method to differentiate drug-induced local anesthesia from neuromuscular blockade in mice. J Pharamacol Meth. 1992;27:85–93.

    Article  CAS  Google Scholar 

  65. Gantenbein M, Attolini L, Bruguerolle B. Potassium channel agonists modify the local anesthetic activity of bupivacaine in mice. Can J Anaesth. 1996;43:871–6.

    Article  PubMed  CAS  Google Scholar 

  66. Randall LO, Selitto JJ. A method for measurement of analgesic activity of inflamed tissue. Arch Int Pharmacodyn. 1957;CXI:409–19.

    Google Scholar 

  67. Guterres SS, Fessi H, Barratt G, Devissaguet J-P, Puisieux F. Poly(DL-lactide) nanocapsules containing diclofenac: I. Formulation and stability studies. Int J Pharm. 1995;113:57–63.

    Article  CAS  Google Scholar 

  68. Ma J, Feng P, Ye C, Wang Y, Fan Y. An improved interfacial coacervation technique to fabricate biodegradable nanocapsules of an aqueous peptide solution from polylactide and its block copolymers with poly(ethylene glycol). Colloid Polym Sci. 2001;279:387–92.

    Article  CAS  Google Scholar 

  69. Stella B, Arpicco S, Rocco F, Marsaud V, Renoir JM, Cattel L, et al. Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. Int J Pharm. 2007;344:71–7.

    Article  PubMed  CAS  Google Scholar 

  70. Fresta M, Cavallaro G, Giammona G, Wehrli E, Puglisi G. Preparation and characterization of polyethyl-2-cyanoacrylate nanocapsules containing antiepileptic drugs. Biomaterials. 1996;17:751–8.

    Article  PubMed  CAS  Google Scholar 

  71. Blouza IL, Charcosset C, Sfarb S, Fessi H. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm. 2006;325:124–31.

    Article  Google Scholar 

  72. Wischke C, Schwendeman SP. Principles of encapsulation of hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364:298–327.

    Article  PubMed  CAS  Google Scholar 

  73. Romero-Cano MS, Vicent B. Controlled release of 4-nitroanisole from poly(lactic acid) nanoparticles. J Control Release. 2002;82:127–35.

    Article  PubMed  CAS  Google Scholar 

  74. Sinnott CJ, Strichartz GR. Levobupivacaine versus ropivacaine for sciatic nerve block in the rat. Reg Anesth Pain Med. 2003;28:294–303.

    PubMed  CAS  Google Scholar 

  75. Ginosar Y, Davidson EM, Firman N, Meroz Y, Lemmens H, Weiniger CF. A randomized controlled trial using patient-controlled epidural analgesia with 0.25% versus 0.0625% bupivacaine in nulliparous labor: effect on analgesia requirement and maternal satisfaction. Int J Obstet Anesth. 2010;19:171–8.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank FAPESP (processes 06-00121-9 and 07/00127-0), CNPq and Fundunesp for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Fernandes Fraceto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Melo, N.F.S., Grillo, R., Guilherme, V.A. et al. Poly(Lactide-co-Glycolide) Nanocapsules Containing Benzocaine: Influence of the Composition of the Oily Nucleus on Physico-Chemical Properties and Anesthetic Activity. Pharm Res 28, 1984–1994 (2011). https://doi.org/10.1007/s11095-011-0425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0425-6

KEY WORDS

Navigation