Skip to main content

Advertisement

Log in

Self-Assembled and Nanostructured siRNA Delivery Systems

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

A wide range of organic and inorganic materials have been used in the development of nano-scale self-assembling gene delivery systems to improve the therapeutic efficacy of nucleic acid drugs. Small interfering RNA (siRNA) has recently been recognized as a promising and potent nucleic acid medicine for the treatment of incurable genetic disorders including cancer; however, siRNA-based therapeutics suffer from the same delivery problems as conventional nucleic acid drugs such as plasmid DNA and antisense oligonucleotides. Many of the delivery strategies developed for nucleic acid drugs have been applied to siRNA therapeutics, but they have not produced satisfactory in vivo gene silencing efficiencies to warrant clinical trials. This review discusses recent progress in the development of self-assembled and nanostructured delivery systems for efficient siRNA-induced gene silencing and their potential application in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

    Article  PubMed  CAS  Google Scholar 

  2. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature. 2004;431:371–8.

    Article  PubMed  CAS  Google Scholar 

  3. Durcan N, Murphy C, Cryan S. Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol Pharm. 2008;5:566–99.

    Article  Google Scholar 

  4. Kim SH, Jeong JH, Kim T, Kim SW, Bull DA. VEGF siRNA delivery system using arginine-grafted bioreducible poly(disulfide amine). Mol Pharm. 2009;6:718–26.

    Article  PubMed  CAS  Google Scholar 

  5. Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004;3:318–29.

    Article  PubMed  CAS  Google Scholar 

  6. Jeong JH, Kim SW, Park TG. Molecular design of functional polymers for gene therapy. Prog Polym Sci. 2007;32:1239–74.

    Article  CAS  Google Scholar 

  7. Kim SH, Jeong JH, Ou M, Yockman JW, Kim SW, Bull DA. Cardiomyocyte-targeted siRNA delivery by prostaglandin E2-Fas siRNA polyplexes formulated with reducible poly(amido amine) for preventing cardiomyocyte apoptosis. Biomaterials. 2008;29:4439–46.

    Article  PubMed  CAS  Google Scholar 

  8. Smedt SCD, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res. 2000;17:113–26.

    Article  PubMed  Google Scholar 

  9. Tomlinson E, Rolland AP. Controllable gene therapy-pharmaceutics of non-viral gene delivery systems. J Control Release. 1996;39:357–72.

    Article  CAS  Google Scholar 

  10. Kwoh DT, Coffin CC, Lollo CP, Jovenal J, Banaszczyk MG, Mullen P, et al. Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta. 1999;1444:171–90.

    PubMed  CAS  Google Scholar 

  11. Gao X, Kim KS, Liu D. Nonviral gene delivery: what we know and what is next. AAPS J. 2007;9:E92–104.

    Article  PubMed  CAS  Google Scholar 

  12. Plank C, Mechtler K, Szoka Jr FC, Wagner E. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther. 1996;7:1437–46.

    Article  PubMed  CAS  Google Scholar 

  13. Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121:64–73.

    Article  PubMed  CAS  Google Scholar 

  14. Shah SA, Brunger AT. A crystal structure of a statically disordered 17 base-pair RNA duplex: principles of RNA crystal packing and its effect on nucleic acid structure. J Mol Biol. 1999;285:1577–88.

    Article  PubMed  CAS  Google Scholar 

  15. Kebbekus P, Draper DE, Hagerman P. Persistence length of RNA. Biochemistry. 1998;34:4354–7.

    Article  Google Scholar 

  16. Mok H, Lee SH, Park JW, Park TG. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nat Mater. 2010;9:272–8.

    PubMed  CAS  Google Scholar 

  17. Lee SY, Huh MS, Lee S, Lee SJ, Chung H, Park JH, et al. Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J Control Release. 2010;141:339–46.

    Article  PubMed  CAS  Google Scholar 

  18. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977;252:3582–6.

    PubMed  CAS  Google Scholar 

  19. Abuchowski A, van Es T, Palczuk NC, Davis FF. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem. 1977;11:3578–81.

    Google Scholar 

  20. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10:1451–8.

    Article  PubMed  CAS  Google Scholar 

  21. Veronese FM, Harris JM. Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev. 2002;54:453–6.

    Article  PubMed  CAS  Google Scholar 

  22. Gursahani H, Riggs-sauthier J, Pfeiffer J, Lechuga-Ballesteros D, Fishburn CS. Absorption of polyethylene glycol (PEG) polymers: the effect of PEG size on permeability. J Pharm Sci. 2009;98:2847–56.

    Article  PubMed  CAS  Google Scholar 

  23. Jeong JH, Kim SW, Park TG. A new antisense oligonucleotide delivery system based on self-assembled ODNPEG hybrid conjugate micelles. J Control Release. 2003;93:183–91.

    Article  PubMed  CAS  Google Scholar 

  24. Jeong JH, Kim SH, Kim SW, Park TG. Intracellular delivery of poly(ethylene glycol) conjugated antisense oligonucleotide using cationic lipids by formation of self-assembled polyelectrolyte complex micelles. J Nanosci Nanotechnol. 2006;6:2790–5.

    Article  PubMed  CAS  Google Scholar 

  25. Osada K, Christie RJ, Kataoka K. Polymeric micelles from poly(ethylene glycol)–poly(amino acid) block copolymer for drug and gene delivery. J R Soc Interface. 2009;6:S325–39.

    Article  PubMed  CAS  Google Scholar 

  26. Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, et al. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem. 2002;13:845–54.

    Article  PubMed  CAS  Google Scholar 

  27. Kunath K, Harpe A, Petersen H, Fischer D, Voigt K, Kissel T, et al. The structure of PEG-modified poly(ethylene imines) influences biodistribution and pharmacokinetics of their complexes with NF-κB decoy in mice. Pharm Res. 2002;19:810–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kataoka K, Itaka K, Nishiyama N, Yamasaki Y, Oishi M, Nagasaki Y. Smart polymeric micelles as nanocarriers for oligonucleotides and siRNA delivery. Nucleic Aicds Symp Ser. 2005;49:17–8.

    Article  Google Scholar 

  29. Kim SH, Mok H, Jeong JH, Kim SW, Park TG. Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL conjugate. Bioconjug Chem. 2006;17:241–4.

    Article  PubMed  Google Scholar 

  30. Naeyea B, Raemdoncka K, Remauta K, Sproatb B, Demeestera J, De Smedta SC. PEGylation of biodegradable dextran nanogels for siRNA delivery. Eur J Pharm Sci. 2010;40:342–51.

    Article  Google Scholar 

  31. Tamura A, Oishi M, Nagasaki Y. Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core. J Control Release. 2010;146:378–87.

    Article  PubMed  CAS  Google Scholar 

  32. Noh SM, Park MO, Shim G, Han SE, Lee HY, Huh JH, et al. Pegylated poly-L-arginine derivatives of chitosan for effective delivery of siRNA. J Control Release. 2010;145:159–64.

    Article  PubMed  CAS  Google Scholar 

  33. Kim WJ, Yockmana JW, Lee M, Jeong JH, Kim Y, Kim SW. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J Control Release. 2005;106:224–34.

    Article  PubMed  CAS  Google Scholar 

  34. Hong JW, Park JH, Huh KM, Chung H, Kwon IC, Jeong SY. PEGylated polyethylenimine for in vivo local gene delivery based on lipiodolized emulsion system. J Control Release. 2004;99:167–76.

    Article  PubMed  CAS  Google Scholar 

  35. Jeong JH, Lee M, Kim WJ, Yockman JW, Park TG, Kim YH, et al. Anti-GAD antibody targeted non-viral gene delivery to islet beta cells. J Control Release. 2005;107:562–70.

    Article  PubMed  CAS  Google Scholar 

  36. Lee H, Jeong JH, Park TG. PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. J Control Release. 2002;79:283–91.

    Article  PubMed  CAS  Google Scholar 

  37. Kaul G, Amiji M. Tumor-targeted gene delivery using poly(ethyleneglycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res. 2005;22:956–65.

    Article  Google Scholar 

  38. Lee H, Kim TH, Park TG. A receptor-mediated gene delivery system using streptavidin and biotin-derivatized, pegylated epidermal growth factor. J Control Release. 2002;83:109–19.

    Article  PubMed  CAS  Google Scholar 

  39. Meyer O, Kirpotin D, Hong K, Sternberg B, Park JW, Woodlei MC. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J Biol Chem. 1998;273:15621–7.

    Article  PubMed  CAS  Google Scholar 

  40. Harada A, Togawa H, Kataoka K. Physicochemical properties and nuclease resistance of antisenseoligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)–poly(L-Lysine) block copolymers. Eur J Pharm Sci. 2001;13:35–42.

    Article  PubMed  CAS  Google Scholar 

  41. Shi F, Wasungu L, Aomden A, Stuart MCA, Polushkin E, Engberts JBFN, et al. Interference of poly(ethylene glycol)–lipid analogues with cationic-lipid-mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. Biochem J. 2002;366:333–41.

    PubMed  CAS  Google Scholar 

  42. Oishi M, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Smart polyion complex micelles for targeted intracellular delivery of PEGylated antisense oligonucleotides containing acid-labile linkages. Chembiochem. 2005;6:718–25.

    Article  PubMed  CAS  Google Scholar 

  43. Jeong JH, Kim SH, Kim SW, Park TG. In vivo tumor targeting of ODN-PEG-folic acid/PEI polyelectrolyte complex micelles. J Biomater Sci Polym Ed. 2005;16:1409–19.

    Article  PubMed  CAS  Google Scholar 

  44. Oishi M, Sasaki S, Nagasaki Y, Kataoka K. pH-Responsive oligodeoxynucleotide (ODN)-poly(ethylene glycol) conjugate through acid-labile β-thiopropionate linkage: preparation and polyion complex micelle formation. Biomacromolecules. 2003;4:1426–32.

    Article  PubMed  CAS  Google Scholar 

  45. Jeong JH, Kim SH, Kim SW, Park TG. Polyelectrolyte complex micelles composed of c-raf antisense oligodeoxynucleotide-poly(ethylene glycol) conjugate and poly(ethylenimine): effect of systemic administration on tumor growth. Bioconjug Chem. 2005;16:1034–7.

    Article  PubMed  CAS  Google Scholar 

  46. Kim SH, Jeong JH, Mok H, Lee SH, Kim SW, Park TG. Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN-PEG-folate conjugate and cationic lipids. Biotechnol Prog. 2007;23:232–7.

    Article  PubMed  CAS  Google Scholar 

  47. Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc. 2005;127:1624–5.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang M, Ishii A, Nishiyama N, Matsumoto S, Ishii T, Yamasaki Y, et al. PEGylated calcium phosphate nanocomposites as smart environment-sensitive carriers for siRNA delivery. Adv Mater. 2009;21:3520–5.

    Article  CAS  Google Scholar 

  49. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem. 2008;19:2156–62.

    Article  PubMed  CAS  Google Scholar 

  50. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J Control Release. 2006;116:123–9.

    Article  PubMed  CAS  Google Scholar 

  51. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. PEG Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release. 2008;129:107–16.

    Article  PubMed  CAS  Google Scholar 

  52. Lee SH, Kim SH, Park TG. Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate and cationic fusogenic peptide. Biochem Biophys Res Commun. 2007;357:511–6.

    Article  PubMed  CAS  Google Scholar 

  53. Mok H, Park TG. Self-crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA. Biopolymers. 2008;89:881–8.

    Article  PubMed  CAS  Google Scholar 

  54. Lee SH, Bae KH, Kim SH, Lee KR, Park TG. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int J Pharm. 2008;364:94–101.

    Article  PubMed  CAS  Google Scholar 

  55. Kim HR, Kim IK, Bae KH, Lee SH, Lee Y, Park TG. Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA. Mol Pharm. 2008;5:622–31.

    Article  PubMed  CAS  Google Scholar 

  56. Jeong JH, Mok HJ, Oh Y, Park TG. siRNA conjugate delivery systems. Bioconjug Chem. 2009;20:5–14.

    Article  PubMed  CAS  Google Scholar 

  57. Jeong JH, Kim SW, Park TG. Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug Chem. 2003;14:473–9.

    Article  PubMed  CAS  Google Scholar 

  58. Scanlon KJ. Anti-genes: siRNA, ribozymes and antisense. Curr Pharm Biotechnol. 2004;5:415–20.

    Article  PubMed  CAS  Google Scholar 

  59. de Martimprey H, Vauthier C, Malvy C, Couvreur P. Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm. 2009;71:490–504.

    Article  PubMed  Google Scholar 

  60. Brown KM, Chu C, Rana TM. Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol. 2005;12:469–70.

    Article  PubMed  CAS  Google Scholar 

  61. Jung S, Lee SH, Mok H, Chung HJ, Park TG. Gene silencing efficiency of siRNA-PEG conjugates: effect of PEGylation site and PEG molecular weight. J Control Release. 2010;144:306–13.

    Article  PubMed  CAS  Google Scholar 

  62. Oishi M, Nagasaki Y, Nishiyama N, Itaka K, Takagi M, Shimamoto A, et al. Enhanced growth inhibition of hepatic multicellular tumor spheroids by lactosylated poly(ethylene glycol)-siRNA conjugate formulated in PEGylated polyplexes. ChemMedChem. 2007;2:1290–7.

    Article  PubMed  CAS  Google Scholar 

  63. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42:7967–75.

    Article  PubMed  CAS  Google Scholar 

  64. Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R, et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem. 2005;48:4247–53.

    Article  PubMed  CAS  Google Scholar 

  65. Shah S, Friedman SH. Tolerance of RNA interference toward modifications of the 5′ antisense phosphate of small interfering RNA. Oligonucleotides. 2007;17:35–43.

    Article  PubMed  CAS  Google Scholar 

  66. Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 2003;31:589–95.

    Article  PubMed  CAS  Google Scholar 

  67. Moschos SA, Jones SW, Perry MM, Williams AE, Erjefalt JS, Turner JJ, et al. Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem. 2007;18:1450–9.

    Article  PubMed  CAS  Google Scholar 

  68. Muratovska A, Eccles MR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 2004;558:63–8.

    Article  PubMed  CAS  Google Scholar 

  69. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA. 2002;99:12617–21.

    Article  PubMed  CAS  Google Scholar 

  70. Meong F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials. 2009;30:2180–98.

    Article  Google Scholar 

  71. Werth S, Urban-Klein B, Dai L, Hobel S, Grzelinski M, Bakowsky U, et al. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release. 2006;112:257–70.

    Article  PubMed  CAS  Google Scholar 

  72. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12:461–6.

    Article  PubMed  CAS  Google Scholar 

  73. Mok H, Park TG. Functional polymers for targeted delivery of nucleic acid drugs. Macromol Biosci. 2009;9:731–43.

    Article  PubMed  CAS  Google Scholar 

  74. Wagner E. Application of membrane-active peptides for nonviral gene delivery. Adv Drug Deliv Rev. 1999;38:279–89.

    Article  PubMed  CAS  Google Scholar 

  75. Wyman TB, Nicol F, Zelphati O, Scaria PV, Plank C, Szoka FC. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry. 1997;36:3008–17.

    Article  PubMed  CAS  Google Scholar 

  76. Choi SH, Lee SH, Park TG. Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromolecules. 2006;7:1864–70.

    Article  PubMed  CAS  Google Scholar 

  77. Choi SH, Lee J, Choi S, Park TG. Thermally reversible pluronic/heparin nanocapsules exhibiting 1000-fold volume transition. Langmuir. 2006;22:1758–62.

    Article  PubMed  CAS  Google Scholar 

  78. Lee K, Bae KH, Lee Y, Lee SH, Ahn C, Park TG. Pluronic/polyethylenimine shell crosslinked nanocapsules with embedded magnetite nanocrystals for magnetically triggered delivery of siRNA. Macromol Biosci. 2010;10:239–45.

    Article  PubMed  CAS  Google Scholar 

  79. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc. 1998;120:1959–64.

    Article  CAS  Google Scholar 

  80. Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K. Quantitative and reversible lectin-induced association of gold nanoparticles modified with α-lactosyl-ω-mercapto-poly(ethylene glycol). J Am Chem Soc. 2001;123:8226–30.

    Article  PubMed  CAS  Google Scholar 

  81. Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotech. 2008;6:2.

    Article  Google Scholar 

  82. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006;312:1027–30.

    Article  PubMed  CAS  Google Scholar 

  83. Sandhu KK, McIntosh CM, Simard JM, Smith SW, Rotello VM. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem. 2002;13:3–6.

    Article  PubMed  CAS  Google Scholar 

  84. Niidome T, Nakashima K, Takahashi H, Niidome Y. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun. 2004;10:1978–9.

    Article  Google Scholar 

  85. Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther. 2006;13:644–70.

    Article  PubMed  CAS  Google Scholar 

  86. Zimmermann TS, Lee ACH, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441:111–4.

    Article  PubMed  CAS  Google Scholar 

  87. Pal A, Ahmad A, Khan S, Sakabe I, Zhang C, Kasid UN, et al. Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int J Oncol. 2005;26:1087–91.

    PubMed  CAS  Google Scholar 

  88. Coleman RE, Biganzoli L, Canney P, Dirix L, Mauriac L, Chollet P, et al. A randomized phase II study of two different schedules of pegylated liposomal doxorubicin in metastatic breast cancer (EORTC-10993). Eur J Cancer. 2006;42:882–7.

    Article  PubMed  CAS  Google Scholar 

  89. Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG, et al. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials. 2010;31:2408–16.

    Article  PubMed  CAS  Google Scholar 

  90. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  PubMed  CAS  Google Scholar 

  91. Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 1994;79:185–8.

    Article  PubMed  CAS  Google Scholar 

  92. Al-Abd AM, Lee SH, Kim SH, Cha J, Park TG, Lee SJ. Penetration and efficacy of VEGF siRNA using polyelectrolyte complex micelles in a human solid tumor model in-vitro. J Control Release. 2009;137:130–5.

    Article  PubMed  CAS  Google Scholar 

  93. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59:748–58.

    Article  PubMed  CAS  Google Scholar 

  94. Merdan T, Callahan J, Petersen H, Kunath K, Bakowsky U, Kopeckova P, et al. Pegylated polyethylenimine-Fab’ antibody fragment conjugate for targeted gene delivery to human ovarian carcinoma cells. Bioconjug Chem. 2003;14:989–96.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Korea Healthcare Technology R&D Project from the Ministry for Health, Welfare & Family Affairs (A085136), Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010–0022471), National Research Laboratory Basic Science Research Program (2010–0027955), and WCU Program from the Ministry of Education, and Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Hwa Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, J.H., Park, T.G. & Kim, S.H. Self-Assembled and Nanostructured siRNA Delivery Systems. Pharm Res 28, 2072–2085 (2011). https://doi.org/10.1007/s11095-011-0412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0412-y

KEY WORDS

Navigation