Skip to main content

Advertisement

Log in

Designing Dendrimers for Drug Delivery and Imaging: Pharmacokinetic Considerations

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Dendrimers have well-organized high branches with a layered architecture providing a series of versatile chemical modification for various purposes. Consequently, this dendrimer nanotechnology explores a new promising class of nanoscale carriers for therapeutic drugs and imaging reagents using passive and active targeting approaches. By controlling dendritic structures, the biological fate of dendrimer/dendrimer-based drugs can be significantly altered based on their intrinsic physicochemical properties, including the hydrophilicity of the unit molecules, particle size, surface charge, and modification. Accordingly, pharmacokinetic aspects play an important role in the design and development of dendrimer systems for successful in vivo application and clinical translation. This review focuses on the recent progress regarding dendritic architectures, structure-related toxicity, and critical factors affecting the pharmacokinetics and biodistribution of dendrimer/dendrimer-based drugs. A better understanding of the basic aspects of dendritic systems and their pharmacokinetics will help to develop a rationale for the design of dendrimers for the controlled delivery of drugs and imaging reagents for therapeutic or diagnostic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

    Article  PubMed  CAS  Google Scholar 

  2. Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100:572–9.

    Article  PubMed  CAS  Google Scholar 

  3. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    PubMed  CAS  Google Scholar 

  4. Buhleier E, Wehner W, Vogtle F. “Cascade”-and “Nonskid-Chain-like” syntheses of molecular cavity topologies. Synthesis. 1978;155.

  5. Denkewalter RG, Kolc J, Lukasavage WJ. Macromolecular highly branched homogeneous compound based on lysine units. 1981.

  6. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymer: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.

    Article  CAS  Google Scholar 

  7. Newkome GR, Yao Z, Baker GR, Gupta VK. Micelles. Part 1. Cascade molecules: a new approach to micelles. A[27]-arbosol. J Org Chem. 1985;50:2003–4.

    Article  CAS  Google Scholar 

  8. Svenson S, Tomalia D. Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev. 2005;57:2106–29.

    Article  PubMed  CAS  Google Scholar 

  9. Wolinsky J, Grinstaff M. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev. 2008;60:1037–55.

    Article  PubMed  CAS  Google Scholar 

  10. Kobayashi H, Brechbiel M. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev. 2005;57:2271–86.

    Article  PubMed  CAS  Google Scholar 

  11. Sugao Y, Watanabe K, Higuchi Y, Kurihara R, Kawakami S, Hashida M, et al. NFkappaB decoy delivery using dendritic poly(l-lysine) for treatment of endotoxin-induced hepatitis in mice. Bioorg Med Chem. 2009;17:4990–5.

    Article  PubMed  CAS  Google Scholar 

  12. Dufès C, Uchegbu I, Schätzlein A. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57:2177–202.

    Article  PubMed  CAS  Google Scholar 

  13. Hawker C, Fréchet J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc. 1990;112:7638–47.

    Article  CAS  Google Scholar 

  14. Fréchet J, Hawker C, Gitsov I, Leon JW. Dendrimers and hyperbranched polymers: two families of three-dimensional macromolecules with similar but clearly distinct properties. J Macromol Sci Pure Appl Chem. 1996;33:1399–425.

    Article  Google Scholar 

  15. Lee C, MacKay J, Fréchet J, Szoka F. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.

    Article  PubMed  CAS  Google Scholar 

  16. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57:2215–37.

    Article  PubMed  CAS  Google Scholar 

  17. Cheng Y, Xu T. The effect of dendrimers on the pharmacodynamic and pharmacokinetic behaviors of non-covalently or covalently attached drugs. Eur J Med Chem. 2008;43:2291–7.

    Article  PubMed  CAS  Google Scholar 

  18. Menjoge A, Kannan R, Tomalia D. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15:171–85.

    Article  PubMed  CAS  Google Scholar 

  19. de Brabander-van den Berg E, Meijer E. Poly(propylene imine) dendrimers: large-scale synthesis by heterogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl. 1993;32:1308–11.

    Article  Google Scholar 

  20. Spetzler J, Tam J. Unprotected peptides as building blocks for branched peptides and peptide dendrimers. Int J Pept Protein Res. 1995;45:78–85.

    Article  PubMed  CAS  Google Scholar 

  21. Fréchet J. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science. 1994;263:1710–5.

    Article  PubMed  Google Scholar 

  22. Zhang W, Simanek E. Dendrimers based on melamine. Divergent and orthogonal, convergent syntheses of a G3 dendrimer. Org Lett. 2000;2:843–5.

    Article  PubMed  CAS  Google Scholar 

  23. Wu P, Feldman A, Nugent A, Hawker C, Scheel A, Voit B, et al. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. Angew Chem Int Ed Engl. 2004;43:3928–32.

    Article  PubMed  CAS  Google Scholar 

  24. McGrath D. Dendrimer disassembly as a new paradigm for the application of dendritic structures. Mol Pharm. 2005;2:253–63.

    Article  PubMed  CAS  Google Scholar 

  25. Boyd B, Kaminskas L, Karellas P, Krippner G, Lessene R, Porter C. Cationic poly-L-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Mol Pharm. 2006;3:614–27.

    Article  PubMed  CAS  Google Scholar 

  26. Vega-Villa K, Takemoto J, Yáñez J, Remsberg C, Forrest M, Davies N. Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev. 2008;60:929–38.

    Article  PubMed  CAS  Google Scholar 

  27. Roberts J, Bhalgat M, Zera R. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res. 1996;30:53–65.

    Article  PubMed  CAS  Google Scholar 

  28. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener J, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release. 2000;65:133–48.

    Article  PubMed  CAS  Google Scholar 

  29. Ohsaki M, Okuda T, Wada A, Hirayama T, Niidome T, Aoyagi H. In vitro gene transfection using dendritic poly(L-lysine). Bioconjug Chem. 2002;13:510–7.

    Article  PubMed  CAS  Google Scholar 

  30. Hong S, Bielinska A, Mecke A, Keszler B, Beals J, Shi X, et al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem. 2004;15:774–82.

    Article  PubMed  CAS  Google Scholar 

  31. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown N, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252:263–6.

    Article  PubMed  CAS  Google Scholar 

  32. Yang H, Lopina S, DiPersio L, Schmidt S. Stealth dendrimers for drug delivery: correlation between PEGylation, cytocompatibility, and drug payload. J Mater Sci Mater Med. 2008;19:1991–7.

    Article  PubMed  CAS  Google Scholar 

  33. Bhadra D, Bhadra S, Jain S, Jain N. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 2003;257:111–24.

    Article  PubMed  CAS  Google Scholar 

  34. Kolhatkar R, Kitchens K, Swaan P, Ghandehari H. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug Chem. 2007;18:2054–60.

    Article  PubMed  CAS  Google Scholar 

  35. Asthana A, Chauhan A, Diwan P, Jain N. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech. 2005;6:E536–42.

    Article  PubMed  Google Scholar 

  36. Kukowska-Latallo J, Candido K, Cao Z, Nigavekar S, Majoros I, Thomas T, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65:5317–24.

    Article  PubMed  CAS  Google Scholar 

  37. Lee C, Yoshida M, Fréchet J, Dy E, Szoka F. In vitro and in vivo evaluation of hydrophilic dendronized linear polymers. Bioconjug Chem. 2005;16:535–41.

    Article  PubMed  CAS  Google Scholar 

  38. Gillies E, Dy E, Fréchet J, Szoka F. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol Pharm. 2005;2:129–38.

    Article  PubMed  CAS  Google Scholar 

  39. Miyano T, Wijagkanalan W, Kawakami S, Yamashita F, Hashida M. Anionic amino acid dendrimer-trastuzumab conjugates for specific internalization in HER2-positive cancer cells. Mol Pharm. 2010;7:1318–27.

    Article  PubMed  CAS  Google Scholar 

  40. Neerman M, Zhang W, Parrish A, Simanek E. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm. 2004;281:129–32.

    Article  PubMed  CAS  Google Scholar 

  41. Okuda T, Kawakami S, Maeie T, Niidome T, Yamashita F, Hashida M. Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J Control Release. 2006;114:69–77.

    Article  PubMed  CAS  Google Scholar 

  42. Chen H, Neerman M, Parrish A, Simanek E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc. 2004;126:10044–8.

    Article  PubMed  CAS  Google Scholar 

  43. Padilla De Jesús O, Ihre H, Gagne L, Fréchet J, Szoka FJ. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem. 2002;13:453–61.

    Article  PubMed  CAS  Google Scholar 

  44. Tomalia DA, Naylor AM, Goddard III WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl. 1990;29:138–75.

    Article  Google Scholar 

  45. Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem. 2000;11:910–7.

    Article  PubMed  CAS  Google Scholar 

  46. Okuda T, Kawakami S, Akimoto N, Niidome T, Yamashita F, Hashida M. PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release. 2006;116:330–6.

    Article  PubMed  CAS  Google Scholar 

  47. Gajbhiye V, Kumar PV, Tekade RK, Jain NK. Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Des. 2007;13:415–29.

    Article  CAS  Google Scholar 

  48. Shukla S, Wu G, Chatterjee M, Yang W, Sekido M, Diop L, et al. Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy. Bioconjug Chem. 2003;14:158–67.

    Article  PubMed  CAS  Google Scholar 

  49. Chandrasekar D, Sistla R, Ahmad F, Khar R, Diwan P. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials. 2007;28:504–12.

    Article  PubMed  CAS  Google Scholar 

  50. Yang W, Barth R, Adams D, Soloway A. Intratumoral delivery of boronated epidermal growth factor for neutron capture therapy of brain tumors. Cancer Res. 1997;57:4333–9.

    PubMed  CAS  Google Scholar 

  51. Shukla R, Thomas T, Peters J, Desai A, Kukowska-Latallo J, Patri A, et al. HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem. 2006;17:1109–15.

    Article  PubMed  CAS  Google Scholar 

  52. Agashe H, Babbar A, Jain S, Sharma R, Mishra A, Asthana A, et al. Investigations on biodistribution of technetium-99m-labeled carbohydrate-coated poly(propylene imine) dendrimers. Nanomedicine. 2007;3:120–7.

    PubMed  CAS  Google Scholar 

  53. Gurdag S, Khandare J, Stapels S, Matherly L, Kannan R. Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem. 2006;17:275–83.

    Article  PubMed  CAS  Google Scholar 

  54. Shukla R, Thomas TP, Desai AM, A. K, Park SJ, Baker JR Jr. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb. Nanotechnology. 2008;19:art. no. 295102.

  55. Kaminskas L, Kelly B, McLeod V, Boyd B, Krippner G, Williams E, et al. Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Mol Pharm. 2009;6:1190–204.

    Article  PubMed  CAS  Google Scholar 

  56. Lee C, Gillies E, Fox M, Guillaudeu S, Fréchet J, Dy E, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA. 2006;103:16649–54.

    Article  PubMed  CAS  Google Scholar 

  57. Guillaudeu S, Fox M, Haidar Y, Dy E, Szoka F, Fréchet J. PEGylated dendrimers with core functionality for biological applications. Bioconjug Chem. 2008;19:461–9.

    Article  PubMed  CAS  Google Scholar 

  58. van der Poll D, Kieler-Ferguson H, Floyd W, Guillaudeu S, Jerger K, Szoka F, et al. Design, synthesis, and biological evaluation of a robust, biodegradable dendrimer. Bioconjug Chem. 2010;21:764–73.

    Article  PubMed  CAS  Google Scholar 

  59. Zhu S, Hong M, Zhang L, Tang G, Jiang Y, Pei Y. PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm Res. 2010;27(1):161–74.

    Article  PubMed  CAS  Google Scholar 

  60. Fox M, Guillaudeu S, Fréchet J, Jerger K, Macaraeg N, Szoka F. Synthesis and in vivo antitumor efficacy of PEGylated poly(l-lysine) dendrimer-camptothecin conjugates. Mol Pharm. 2009;6:1562–72.

    Article  PubMed  CAS  Google Scholar 

  61. Wiener E, Brechbiel M, Brothers H, Magin R, Gansow O, Tomalia D, et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med. 1994;31:1–8.

    Article  PubMed  CAS  Google Scholar 

  62. Konda S, Aref M, Brechbiel M, Wiener E. Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress. Invest Radiol. 2000;35:50–7.

    Article  PubMed  CAS  Google Scholar 

  63. Wu G, Barth R, Yang W, Kawabata S, Zhang L, Green-Church K. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther. 2006;5:52–9.

    Article  PubMed  CAS  Google Scholar 

  64. Yang W, Wu G, Barth R, Swindall M, Bandyopadhyaya A, Tjarks W, et al. Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies. Clin Cancer Res. 2008;14:883–91.

    Article  PubMed  CAS  Google Scholar 

  65. Perumal O, Inapagolla R, Kannan S, Kannan R. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials. 2008;29:3469–76.

    Article  PubMed  CAS  Google Scholar 

  66. Najlah M, Freeman S, Attwood D, D’Emanuele A. Synthesis, characterization and stability of dendrimer prodrugs. Int J Pharm. 2006;308:175–82.

    Article  PubMed  CAS  Google Scholar 

  67. Kurtoglu Y, Navath R, Wang B, Kannan S, Romero R, Kannan R. Poly(amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials. 2009;30:2112–21.

    Article  PubMed  CAS  Google Scholar 

  68. Jansen J, de Brabander-van den Berg E, Meijer E. Encapsulation of guest molecules into a dendritic box. Science. 1994;266:1226–9.

    Article  PubMed  CAS  Google Scholar 

  69. Gupta U, Agashe H, Asthana A, Jain N. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules. 2006;7:649–58.

    Article  PubMed  CAS  Google Scholar 

  70. Cheng Y, Li Y, Wu Q, Zhang J, Xu T. Generation-dependent encapsulation/electrostatic attachment of phenobarbital molecules by poly(amidoamine) dendrimers: evidence from 2D-NOESY investigations. Eur J Med Chem. 2009;44:2219–23.

    Article  PubMed  CAS  Google Scholar 

  71. Ooya T, Lee J, Park K. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J Control Release. 2003;93:121–7.

    Article  PubMed  CAS  Google Scholar 

  72. Dhanikula R, Hildgen P. Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate. Biomaterials. 2007;28:3140–52.

    Article  PubMed  CAS  Google Scholar 

  73. Yang H, Morris J, Lopina S. Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J Colloid Interface Sci. 2004;273:148–54.

    Article  PubMed  CAS  Google Scholar 

  74. Dutta T, Jain N. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim Biophys Acta. 2007;1770:681–6.

    PubMed  CAS  Google Scholar 

  75. Morgan M, Nakanishi Y, Kroll D, Griset A, Carnahan M, Wathier M, et al. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 2006;66:11913–21.

    Article  PubMed  CAS  Google Scholar 

  76. Malik N, Evagorou E, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs. 1999;10:767–76.

    Article  PubMed  CAS  Google Scholar 

  77. Chauhan A, Sridevi S, Chalasani K, Jain A, Jain S, Jain N, et al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release. 2003;90:335–43.

    Article  PubMed  CAS  Google Scholar 

  78. Patri A, Kukowska-Latallo J, Baker JJ. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev. 2005;57:2203–14.

    Article  PubMed  CAS  Google Scholar 

  79. Kukowska-Latallo J, Bielinska A, Johnson J, Spindler R, Tomalia D, Baker JJ. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci USA. 1996;93:4897–902.

    Article  PubMed  CAS  Google Scholar 

  80. Okuda T, Sugiyama A, Niidome T, Aoyagi H. Characters of dendritic poly(L-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials. 2004;25:537–44.

    Article  PubMed  CAS  Google Scholar 

  81. Radu D, Lai C, Jeftinija K, Rowe E, Jeftinija S, Lin V. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc. 2004;126:13216–7.

    Article  PubMed  CAS  Google Scholar 

  82. Haensler J, Szoka FJ. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem. 1993;4:372–9.

    Article  PubMed  CAS  Google Scholar 

  83. Nishikawa M, Takakura Y, Hashida M. Pharmacokinetic evaluation of polymeric carriers. Adv Drug Deliv Rev. 1996;21:135–55.

    Article  CAS  Google Scholar 

  84. Takakura Y, Hashida M. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm Res. 1996;13:820–31.

    Article  PubMed  CAS  Google Scholar 

  85. Brenner B, Hostetter T, Humes H. Glomerular permselectivity: barrier function based on discrimination of molecular size and charge. Am J Physiol. 1978;234:F455–60.

    PubMed  CAS  Google Scholar 

  86. Gerlowski L, Jain R. Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci. 1983;72:1103–27.

    Article  PubMed  CAS  Google Scholar 

  87. Rennke H, Patel Y, Venkatachalam M. Glomerular filtration of proteins: clearance of anionic, neutral, and cationic horseradish peroxidase in the rat. Kidney Int. 1978;13:278–88.

    Article  PubMed  CAS  Google Scholar 

  88. Nishida K, Mihara K, Takino T, Nakane S, Takakura Y, Hashida M, et al. Hepatic disposition characteristics of electrically charged macromolecules in rat in vivo and in the perfused liver. Pharm Res. 1991;8:437–44.

    Article  PubMed  CAS  Google Scholar 

  89. Takakura Y, Fujita T, Furitsu H, Nishikawa M, Sekaki H, Hashida M. Pharmacokinetics of succinylated proteins and dextran sulfate in mice: implications for hepatic targeting of protein drugs by direct succinylation via scavenger receptors. Int J Pharm. 1994;105:19–29.

    Article  CAS  Google Scholar 

  90. Dr O, Opsonization PN. biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.

    Article  CAS  Google Scholar 

  91. D’Souza AJ, Topp EM. Release from polymeric prodrugs: linkages and their degradation. J Pharm Sci. 2004;93:1962–79.

    Article  PubMed  CAS  Google Scholar 

  92. Hunt CA, MacGregor RD, Siegel RA. Engineering targeted in vivo drug delivery. I. the physiological and physicochemical principles governing opportunities and limitations. Pharm Res. 1986;3:333–44.

    Article  CAS  Google Scholar 

  93. Khandare J, Kolhe P, Pillai O, Kannan S, Lieh-Lai M, Kannan R. Synthesis, cellular transport, and activity of polyamidoamine dendrimer-methylprednisolone conjugates. Bioconjug Chem. 2005;16:330–7.

    Article  PubMed  CAS  Google Scholar 

  94. Khan M, Nigavekar S, Minc L, Kariapper M, Nair B, Lesniak W, et al. In vivo biodistribution of dendrimers and dendrimer nanocomposites – implications for cancer imaging and therapy. Technol Cancer Res Treat. 2005;4:603–13.

    PubMed  CAS  Google Scholar 

  95. Kaminskas L, Boyd B, Karellas P, Henderson S, Giannis M, Krippner G, et al. Impact of surface derivatization of poly-L-lysine dendrimers with anionic arylsulfonate or succinate groups on intravenous pharmacokinetics and disposition. Mol Pharm. 2007;4:949–61.

    Article  PubMed  CAS  Google Scholar 

  96. Wang S, Brechbiel M, Wiener E. Characteristics of a new MRI contrast agent prepared from polypropyleneimine dendrimers, generation 2. Invest Radiol. 2003;38:662–8.

    Article  PubMed  CAS  Google Scholar 

  97. Weiner EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med. 1994;31:1–8.

    Article  Google Scholar 

  98. Kobayashi H, Sato N, Hiraga A, Saga T, Nakamoto Y, Ueda H, et al. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn Reson Med. 2001;45:454–60.

    Article  PubMed  CAS  Google Scholar 

  99. Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Konishi J, et al. Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: reference to pharmacokinetic properties of dendrimer-based MR contrast agents. J Magn Reson Imaging. 2001;14:705–13.

    Article  PubMed  CAS  Google Scholar 

  100. Bryant LJ, Jordan E, Bulte J, Herynek V, Frank J. Pharmacokinetics of a high-generation dendrimer-Gd-DOTA. Acad Radiol. 2002;9:S29–33.

    Article  PubMed  Google Scholar 

  101. Bohrer M, Deen W, Robertson C, Troy J, Brenner B. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J Gen Physiol. 1979;74:583–93.

    Article  PubMed  CAS  Google Scholar 

  102. Sarin H, Kanevsky A, Wu H, Sousa A, Wilson C, Aronova M, et al. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J Transl Med. 2009;7:51.

    Article  PubMed  Google Scholar 

  103. Kobayashi H, Kawamoto S, Choyke P, Sato N, Knopp M, Star R, et al. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med. 2003;50:758–66.

    Article  PubMed  CAS  Google Scholar 

  104. Kobayashi H, Kawamoto S, Bernardo M, Brechbiel M, Knopp M, Choyke P. Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J Control Release. 2006;111:343–51.

    Article  PubMed  CAS  Google Scholar 

  105. Kobayashi H, Kawamoto S, Jo S, Bryant HJ, Brechbiel M, Star R. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem. 2003;14:388–94.

    Article  PubMed  CAS  Google Scholar 

  106. Margerum LD, Campion BK, Koo M, Shargill N, Lai J-J, Marumoto A, et al. Gadolinium(III)DO3A macrocycles and polyethylene glycol coupled to dendrimers: Effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J Alloys Compd. 1997;249:185–90.

    Article  CAS  Google Scholar 

  107. Sakharov D, Jie A, Bekkers M, Emeis J, Rijken D. Polylysine as a vehicle for extracellular matrix-targeted local drug delivery, providing high accumulation and long-term retention within the vascular wall. Arterioscler Thromb Vasc Biol. 2001;21:943–8.

    PubMed  CAS  Google Scholar 

  108. Wiwattanapatapee R, Carreño-Gómez B, Malik N, Duncan R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res. 2000;17:991–8.

    Article  PubMed  CAS  Google Scholar 

  109. Kitchens K, Kolhatkar R, Swaan P, Ghandehari H. Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol Pharm. 2008;5:364–9.

    Article  PubMed  CAS  Google Scholar 

  110. Nigavekar S, Sung L, Llanes M, El-Jawahri A, Lawrence T, Becker C, et al. 3H dendrimer nanoparticle organ/tumor distribution. Pharm Res. 2004;21:476–83.

    Article  PubMed  CAS  Google Scholar 

  111. Uehara T, Ishii D, Uemura T, Suzuki H, Kanei T, Takagi K, et al. Gamma-Glutamyl PAMAM dendrimer as versatile precursor for dendrimer-based targeting devices. Bioconjug Chem. 2010;21:175–81.

    Article  PubMed  CAS  Google Scholar 

  112. Kitchens K, Kolhatkar R, Swaan P, Eddington N, Ghandehari H. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescent labeling. Pharm Res. 2006;23:2818–26.

    Article  PubMed  CAS  Google Scholar 

  113. Parrott M, Benhabbour S, Saab C, Lemon J, Parker S, Valliant J, et al. Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J Am Chem Soc. 2009;131:2906–16.

    Article  PubMed  CAS  Google Scholar 

  114. Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med. 2001;46:781–8.

    Article  PubMed  CAS  Google Scholar 

  115. Zhu S, Hong M, Tang G, Qian L, Lin J, Jiang Y, et al. Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: the effects of PEGylation degree and drug conjugation style. Biomaterials. 2010;31:1360–71.

    Article  PubMed  CAS  Google Scholar 

  116. Kaminskas L, Boyd B, Karellas P, Krippner G, Lessene R, Kelly B, et al. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly l-lysine dendrimers. Mol Pharm. 2008;5:449–63.

    Article  PubMed  CAS  Google Scholar 

  117. Kaminskas L, Wu Z, Barlow N, Krippner G, Boyd B, Porter C. Partly-PEGylated Poly-L-lysine dendrimers have reduced plasma stability and circulation times compared with fully PEGylated dendrimers. J Pharm Sci. 2009;98:3871–5.

    Article  PubMed  CAS  Google Scholar 

  118. Gillies E, Fréchet J. Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. J Am Chem Soc. 2002;124:14137–46.

    Article  PubMed  CAS  Google Scholar 

  119. Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Renal Physiol. 2005;288:F605–13.

    Article  PubMed  CAS  Google Scholar 

  120. Lim J, Guo Y, Rostollan C, Stanfield J, Hsieh J, Sun X, et al. The role of the size and number of polyethylene glycol chains in the biodistribution and tumor localization of triazine dendrimers. Mol Pharm. 2008;5:540–7.

    Article  PubMed  CAS  Google Scholar 

  121. 2Hoppe C, Lee Y. The binding and processing of mannose-bovine serum albumin derivatives by rabbit alveolar macrophages. Effect of the sugar density. J Biol Chem. 1983;258:14193–9.

    PubMed  CAS  Google Scholar 

  122. Yeeprae W, Kawakami S, Yamashita F, Hashida M. Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages. J Control Release. 2006;114:193–201.

    Article  PubMed  CAS  Google Scholar 

  123. Wijagkanalan W, Kawakami S, Takenaga M, Igarashi R, Yamashita F, Hashida M. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release. 2008;125:121–30.

    Article  PubMed  CAS  Google Scholar 

  124. Barth R, Adams D, Soloway A, Alam F, Darby M. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy. Bioconjug Chem. 1994;5:58–66.

    Article  PubMed  CAS  Google Scholar 

  125. Barth R, Yang W, Adams D, Rotaru J, Shukla S, Sekido M, et al. Molecular targeting of the epidermal growth factor receptor for neutron capture therapy of gliomas. Cancer Res. 2002;62:3159–66.

    PubMed  CAS  Google Scholar 

  126. Yang W, Barth R, Wu G, Kawabata S, Sferra T, Bandyopadhyaya A, et al. Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4. Clin Cancer Res. 2006;12:3792–802.

    Article  PubMed  CAS  Google Scholar 

  127. Konda S, Wang S, Brechbiel M, Wiener E. Biodistribution of a 153 Gd-folate dendrimer, generation = 4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest Radiol. 2002;37:199–204.

    Article  PubMed  CAS  Google Scholar 

  128. Yao Z, Zhang M, Sakahara H, Saga T, Arano Y, Konishi J. Avidin targeting of intraperitoneal tumor xenografts. J Natl Cancer Inst. 1998;90:25–9.

    Article  PubMed  CAS  Google Scholar 

  129. Wilbur D, Pathare P, Hamlin D, Buhler K, Vessella R. Biotin reagents for antibody pretargeting. 3. Synthesis, radioiodination, and evaluation of biotinylated starburst dendrimers. Bioconjug Chem. 1998;9:813–25.

    Article  PubMed  CAS  Google Scholar 

  130. Kobayashi H, Kawamoto S, Saga T, Sato N, Ishimori T, Konishi J, et al. Avidin-dendrimer-(1B4M-Gd)(254): a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Bioconjug Chem. 2001;12:587–93.

    Article  PubMed  CAS  Google Scholar 

  131. Kobayashi H, Kawamoto S, Star R, Waldmann T, Brechbiel M, Choyke P. Activated clearance of a biotinylated macromolecular MRI contrast agent from the blood pool using an avidin chase. Bioconjug Chem. 2003;14:1044–7.

    Article  PubMed  CAS  Google Scholar 

  132. Dijkgraaf I, Rijnders A, Soede A, Dechesne A, van Esse G, Brouwer A, et al. Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1, 3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem. 2007;5:935–44.

    Article  PubMed  CAS  Google Scholar 

  133. Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, et al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA. 2009;106:685–90.

    Article  PubMed  CAS  Google Scholar 

  134. Huang R, Qu Y, Ke W, Zhu J, Pei Y, Jiang C. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J. 2007;21:1117–25.

    Article  PubMed  CAS  Google Scholar 

  135. Mamede M, Saga T, Ishimori T, Higashi T, Sato N, Kobayashi H, et al. Hepatocyte targeting of 111In-labeled oligo-DNA with avidin or avidin-dendrimer complex. J Control Release. 2004;95:133–41.

    Article  PubMed  CAS  Google Scholar 

  136. Kukowska-Latallo J, Raczka E, Quintana A, Chen C, Rymaszewski M, Baker JJ. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum Gene Ther. 2000;11:1385–95.

    Article  PubMed  CAS  Google Scholar 

  137. Sato N, Kobayashi H, Saga T, Nakamoto Y, Ishimori T, Togashi K, et al. Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice. Clin Cancer Res. 2001;7:3606–12.

    PubMed  CAS  Google Scholar 

  138. Vinter-Jensen L, Frøkiaer J, Jørgensen P, Marqversen J, Rehling M, Dajani E, et al. Tissue distribution of 131I-labelled epidermal growth factor in the pig visualized by dynamic scintigraphy. J Endocrinol. 1995;144:5–12.

    Article  PubMed  CAS  Google Scholar 

  139. Yang W, Barth R, Adams D, Ciesielski M, Fenstermaker R, Shukla S, et al. Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas. Cancer Res. 2002;62:6552–8.

    PubMed  CAS  Google Scholar 

  140. Bai S, Thomas C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci. 2007;96:2090–106.

    Article  PubMed  CAS  Google Scholar 

  141. Menjoge A, Navath R, Asad A, Kannan S, Kim C, Romero R, et al. Transport and biodistribution of dendrimers across human fetal membranes: implications for intravaginal administration of dendrimer-drug conjugates. Biomaterials. 2010;31:5007–21.

    Article  PubMed  CAS  Google Scholar 

  142. Wijagkanalan W, Higuchi Y, Kawakami S, Teshima M, Sasaki H, Hashida M. Enhanced anti-inflammation of inhaled dexamethasone palmitate using mannosylated liposomes in an endotoxin-induced lung inflammation model. Mol Pharmacol. 2008;74:1183–92.

    Article  PubMed  CAS  Google Scholar 

  143. Wijagkanalan W, Kawakami S, Higuchi Y, Yamashita F, Hashida M. Intratracheally instilled mannosylated cationic liposome/NFkappaB decoy complexes for effective prevention of LPS-induced lung inflammation. J Control Release. 2010 in press.

  144. McLennan DN, Porter CJH, Charman SA. Subcutaneous drug delivery and the role of the lymphatics. Drug Discov Today Tech. 2005;2:89–96.

    Article  CAS  Google Scholar 

  145. Kaminskas L, Kota J, McLeod V, Kelly B, Karellas P, Porter C. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J Control Release. 2009;140:108–16.

    Article  PubMed  CAS  Google Scholar 

  146. Florence A, Hussain N. Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv Drug Deliv Rev. 2001;50:S69–89.

    Article  PubMed  CAS  Google Scholar 

  147. Florence A, Sakthivel T, Toth I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J Control Release. 2000;65:253–9.

    Article  PubMed  CAS  Google Scholar 

  148. Ke W, Zhao Y, Huang R, Jiang C, Pei Y. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J Pharm Sci. 2008;97:2208–16.

    Article  PubMed  CAS  Google Scholar 

  149. Zolnik B, Sadrieh N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv Drug Deliv Rev. 2009;61:422–7.

    Article  PubMed  CAS  Google Scholar 

  150. Herborn C, Barkhausen J, Paetsch I, Hunold P, Mahler M, Shamsi K, et al. Coronary arteries: contrast-enhanced MR imaging with SH L 643A–experience in 12 volunteers. Radiology. 2003;229:217–23.

    Article  PubMed  Google Scholar 

  151. McCarthy T, Karellas P, Henderson S, Giannis M, O’Keefe D, Heery G, et al. Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm. 2005;2:312–8.

    Article  PubMed  CAS  Google Scholar 

  152. Patton D, Cosgrove Sweeney Y, McCarthy T, Hillier S. Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrob Agents Chemother. 2006;50:1696–700.

    Article  PubMed  CAS  Google Scholar 

  153. Rupp R, Rosenthal S, Stanberry L. VivaGel (SPL7013 Gel): a candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine. 2007;2:561–6.

    PubMed  CAS  Google Scholar 

  154. Yao H, Veine D, Fay K, Staszewski E, Zeng Z, Livant D. The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation. Breast Cancer Res Treat. 2010 in press.

  155. Kobayashi H, Sato N, Saga T, Nakamoto Y, Ishimori T, Toyama S, et al. Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur J Nucl Med. 2000;27:1334–9.

    Article  PubMed  CAS  Google Scholar 

  156. Carney P, Rogers P, Johnson D. Dual isotope study of iodine-125 and indium-111-labeled antibody in athymic mice. J Nucl Med. 1989;30:374–84.

    PubMed  CAS  Google Scholar 

  157. Casas A, Battah S, Di Venosa G, Dobbin P, Rodriguez L, Fukuda H, et al. Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. J Control Release. 2009;135:136–43.

    Article  PubMed  CAS  Google Scholar 

  158. Chauhan A, Jain N, Diwan P, Khopade A. Solubility enhancement of indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats. J Drug Target. 2004;12:575–83.

    Article  PubMed  CAS  Google Scholar 

  159. Chauhan A, Diwan P, Jain N, Tomalia D. Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly(amidoamine) dendrimers. Biomacromolecules. 2009;10:1195–202.

    Article  PubMed  CAS  Google Scholar 

  160. Cheng Y, Man N, Xu T, Fu R, Wang X, Wen L. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J Pharm Sci. 2007;96:595–602.

    Article  PubMed  CAS  Google Scholar 

  161. Vandamme T, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102:23–38.

    Article  PubMed  CAS  Google Scholar 

  162. Bhadra D, Bhadra S, Jain N. PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm Res. 2006;23:623–33.

    Article  PubMed  CAS  Google Scholar 

  163. Koyama Y, Talanov V, Bernardo M, Hama Y, Regino C, Brechbiel M, et al. A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging. 2007;25:866–71.

    Article  PubMed  Google Scholar 

  164. Subbarayan M, Shetty SJ, Srivastava TS, Noronha OP, Samuel AM, Mukhtar H. Water-soluble 99mTc-labeled dendritic novel porphyrins tumor imaging and diagnosis. Biochem Biophys Res Commun. 2001;281:32–6.

    Article  PubMed  CAS  Google Scholar 

  165. Zhang Y, Sun Y, Xu X, Zhang X, Zhu H, Huang L, et al. Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem. 2010;53:3262–72.

    Article  PubMed  CAS  Google Scholar 

  166. Sarin H, Kanevsky A, Wu H, Brimacombe K, Fung S, Sousa A, et al. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med. 2008;6:80.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We wish to express sincere thanks to Dr. Yasuhiko Hashida of the iCeMS, Kyoto University, Kyoto, Japan for graphic assistance in Fig. 1a. We are grateful for financial support from W. Wijagkanalan by the Japan Society for the Promotion of Sciences (JSPS) through a JSPS research fellowship for young scientists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wassana Wijagkanalan or Mitsuru Hashida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijagkanalan, W., Kawakami, S. & Hashida, M. Designing Dendrimers for Drug Delivery and Imaging: Pharmacokinetic Considerations. Pharm Res 28, 1500–1519 (2011). https://doi.org/10.1007/s11095-010-0339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0339-8

KEY WORDS

Navigation