Skip to main content
Log in

Predicting Intestinal Precipitation—A Case Example for a Basic BCS Class II Drug

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the prediction accuracy of in vitro and in vitro/in silico methods for in vivo intestinal precipitation of basic BCS class II drugs in humans.

Methods

Precipitation rate of a model drug substance, AZD0865 (pKa = 6.1; log KD = 4.2), was investigated in vitro using simulated intestinal media, and calculations of the crystallization rates were made with a theoretical model. Human intestinal precipitation was estimated by analysis of pharmacokinetic data from clinical studies at different doses.

Results

All in vitro models predicted rapid drug precipitation, where the intestinal concentration of dissolved AZD0865 at the highest dose tested was expected to decrease to half after less than 20 min. However, there was no indication of precipitation in vivo in humans as there was a dose proportional increase in drug plasma exposure. The theoretical model predicted no significant precipitation within the range of expected in vivo intestinal concentrations.

Conclusions

This study indicated that simple in vitro methods of in vivo precipitation of orally administered bases overpredict the intestinal crystalline precipitation in vivo in humans. Hydrodynamic conditions were identified as one important factor that needs to be better addressed in future in vivo predictive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. Horn D, Rieger J. Organic nanoparticles in the aqueous phase - theory, experiment, and use. Angew Chem Int Ed. 2001;40:4331–61.

    Article  Google Scholar 

  2. Dai WG, Dong LC, Shi X, Nguyen J, Evans J, Xu Y, et al. Evaluation of drug precipitation of solubility-enhancing liquid formulations using milligram quantities of a new molecular entity (NME). J Pharm Sci. 2007;96:2957–69.

    Article  CAS  PubMed  Google Scholar 

  3. Carino SR, Sperry DC, Hawley M. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum model. J Pharm Sci. 2006;95:116–25.

    Article  CAS  PubMed  Google Scholar 

  4. Kostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol. 2004;56:43–51.

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi M, Sada N, Sugawara M, Iseki K, Miyazaki K. Development of a new system for prediction of drug absorption that takes into account drug dissolution and pH change in the gastro-intestinal tract. Int J Pharm. 2001;221:87–94.

    Article  CAS  PubMed  Google Scholar 

  6. He X, Kadomura S, Takekuma Y, Sugawara M, Miyazaki K. A New System for the Prediction of Drug Absorption Using a pH-Controlled Caco-2 Model: Evaluation of pH-Dependent Soluble Drug Absorption and pH-Related Changes in Absorption. J Pharm Sci. 2004;93:71–7.

    Article  CAS  PubMed  Google Scholar 

  7. Sugawara M, Kadomura S, He X, Takekuma Y, Kohri N, Miyazaki K. The use of an in vitro dissolution and absorption system to evaluate oral absorption of two weak bases in pH-independent controlled-release formulations. Eur J Pharm Sci. 2005;26:1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Gu CH, Rao D, Gandhi RB, Hilden J, Raghavan K. Using a novel multicompartment dissolution system to predict the effect of gastric pH on the oral absorption of weak bases with poor intrinsic solubility. J Pharm Sci. 2005;94:199–208.

    Article  CAS  PubMed  Google Scholar 

  9. Lindfors L, Forssen S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci. 2008;325:404–13.

    Article  CAS  PubMed  Google Scholar 

  10. Gedda K, Briving C, Svensson K, Maxvall I, Andersson K. Mechanism of action of AZD0865, a K + -competitive inhibitor of gastric H+, K+ -ATPase. Biochem Pharmacol. 2007;73:198–205.

    Article  CAS  PubMed  Google Scholar 

  11. The United States Pharmacopeia (USP 32). United States Pharmacopeial Convention, Inc., Rockville, 2008.

  12. Galia E, Nicolaides E, Horter D, Lobenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting In vivo performance of class I and II drugs. Pharm Res. 1998;15:698–705.

    Article  CAS  PubMed  Google Scholar 

  13. Lennernas H, Ahrenstedt O, Hallgren R, Knutson L, Ryde M, Paalzow LK. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm Res. 1992;9:1243–51.

    Article  CAS  PubMed  Google Scholar 

  14. Lindahl A, Ungell A-L, Knutson L, Lennernas H. Characterization of Fluids from the Stomach and Proximal Jejunum in Men and Women. Pharm Res. 1997;14:497–502.

    Article  CAS  PubMed  Google Scholar 

  15. Mithani SD, Bakatselou V, TenHoor CN, Dressman JB. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res. 1996;13:163–7.

    Article  CAS  PubMed  Google Scholar 

  16. Sugano K. Introduction to computational oral absorption simulation. Expert Opin Drug Metabol Toxicol. 2009;5:259–93.

    Article  CAS  Google Scholar 

  17. Lindfors L, Skantze P, Skantze U, Westergren J, Olsson U. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir. 2007;23:9866–74.

    Article  CAS  PubMed  Google Scholar 

  18. Schiller C, Frohlich CP, Giessmann T, Siegmund W, Monnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Alimentary Pharmacol Ther. 2005;22:971–9.

    Article  CAS  Google Scholar 

  19. Gentilcore D, Hausken T, Horowitz M, Jones KL. Measurements of gastric emptying of low- and high-nutrient liquids using 3D ultrasonography and scintigraphy in healthy subjects. Neurogastroenterol Motil. 2006;18:1062–8.

    Article  CAS  PubMed  Google Scholar 

  20. Oberle RL, Chen TS, Lloyd C, Barnett JL, Owyang C, Meyer J, et al. The influence of the interdigestive migrating myoelectric complex on the gastric emptying of liquids. Gastroenterology. 1990;99:1275–82.

    CAS  PubMed  Google Scholar 

  21. Brener W, Hendrix TR, McHugh PR. Regulation of the gastric emptying of glucose. Gastroenterology. 1983;85:76–82.

    CAS  PubMed  Google Scholar 

  22. Hunt JN. Some properties of an alimentary osmoreceptor mechanism. J Physiol. 1956;132:267–88.

    CAS  PubMed  Google Scholar 

  23. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15:11–22.

    Article  CAS  PubMed  Google Scholar 

  24. Rohss K, Wilder-Smith C, Kilhamn J, Fjellman M, Lind T. Suppression of gastric acid with intravenous esomeprazole and omeprazole: Results of 3 studies in healthy subjects. Int J Clin Pharmacol Ther. 2007;45:345–54.

    CAS  PubMed  Google Scholar 

  25. Lindfors L, Forssen S, Skantze P, Skantze U, Zackrisson A, Olsson U. Amorphous drug nanosuspensions. 2. Experimental determination of bulk monomer concentrations. Langmuir. 2006;22:911–6.

    Article  CAS  PubMed  Google Scholar 

  26. Bønløkke L, Hovgaard L, Kristensen HG, Knutson L, Lindahl A, Lennernäs H. A comparison between direct determination of in vivo dissolution and the deconvolution technique in humans. Eur J Pharm Sci. 1999;8:19–27.

    Article  PubMed  Google Scholar 

  27. Clarysse S, Psachoulias D, Brouwers J, Tack J, Annaert P, Duchateau G, et al. Postprandial changes in solubilizing capacity of human intestinal fluids for BCS class II drugs. Pharm Res. 2009;26:1456–66.

    Article  CAS  PubMed  Google Scholar 

  28. Davey R, Garside J. From molecules to crystallizers - an introduction to crystallization. Oxford: Oxford University Press; 2000.

    Google Scholar 

  29. Mullin JW. Crystallization. Oxford: Reed Educational and Professional Publishing, Ltd; 2001.

    Google Scholar 

  30. Sugano K. A simulation of oral absorption using classical nucleation theory. Int J Pharm. 2009;378:142–5.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors acknowledge the valuable contributions of Dr. Clive Wilder Smith, Dr. Lars-Göran Nilsson, Dr. Jonas Pettersson, Dr. Hans Rydholm and Dr. Mats Ekelund with colleagues for the planning and conduct of the clinical studies. The authors also thank Marie Molander Melin and Dr. Mischa van Hout for the bioanalysis of AZD0865 in the clinical studies. We also thank Kornelia Krumkühler for performance of some of the in vitro experiments, Anders Carlsson for giving advice on HPLC analysis and Jan Westergren for writing the theoretical computational program modelling crystallization rates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertil Abrahamsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlert, S., Pålsson, A., Hanisch, G. et al. Predicting Intestinal Precipitation—A Case Example for a Basic BCS Class II Drug. Pharm Res 27, 2119–2130 (2010). https://doi.org/10.1007/s11095-010-0213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0213-8

KEY WORDS

Navigation