Skip to main content

Advertisement

Log in

Biodegradable Implants for Sustained Drug Release in the Eye

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

The safety and effectiveness of systemic and topical medical therapies for ocular disorders are limited due to poor ocular drug uptake, nonspecificity to target tissues, systemic side effects, and poor adherence to therapy. Intravitreal injections can enhance ocular drug delivery, but the need for frequent retreatment and potential injection-related side effects limit the utility of this technique. Sustained-release drug delivery systems have been developed to overcome these limitations; such systems can achieve prolonged therapeutic drug concentrations in ocular target tissues while limiting systemic exposure and side effects and improving patient adherence to therapy. A critical factor in the development of safe and effective drug delivery systems has been the development of biocompatible polymers, which offer the versatility to tailor drug release kinetics for specific drugs and ocular diseases. Ocular implants include nonbiodegradable and biodegradable designs, with the latter offering several advantages. The polymers most commonly used in biodegradable delivery systems are synthetic aliphatic polyesters of the poly-α-hydroxy acid family including polylactic acid, polyglycolic acid, and polylactic-co-glycolic acid. The characteristics of these polymers for medical applications as well as the pharmacological properties, safety, and clinical effectiveness of biodegradable drug implants for the treatment of ocular diseases are reviewed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Conway BR. Recent patents on ocular drug delivery systems. Recent Pat Drug Deliv Formul. 2008;2(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  2. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3(2):275–87.

    Article  CAS  PubMed  Google Scholar 

  3. Kearns VR, Williams RL. Drug delivery systems for the eye. Expert Rev Med Devices. 2009;6(3):277–90.

    Article  CAS  PubMed  Google Scholar 

  4. Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005;57(14):2063–79.

    Article  CAS  PubMed  Google Scholar 

  5. Yasukawa T, Ogura Y, Kimura H, Sakurai E, Tabata Y. Drug delivery from ocular implants. Expert Opin Drug Deliv. 2006;3(2):261–73.

    Article  CAS  PubMed  Google Scholar 

  6. Tanito M, Li F, Elliott MH, Dittmar M, Anderson RE. Protective effect of TEMPOL derivatives against light-induced retinal damage in rats. Invest Ophthalmol Vis Sci. 2007;48(4):1900–5.

    Article  PubMed  Google Scholar 

  7. Ni Z, Hui P. Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica. 2009;223(6):401–10.

    Article  CAS  PubMed  Google Scholar 

  8. Ghate D, Edelhauser HF. Barriers to glaucoma drug delivery. J Glaucoma. 2008;17(2):147–56.

    Article  PubMed  Google Scholar 

  9. Kwak HW, D’Amico DJ. Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch Ophthalmol. 1992;110:259–66.

    CAS  PubMed  Google Scholar 

  10. Kiernan DF, Mieler WF. The use of intraocular corticosteroids. Expert Opin Pharmacother. 2009;10(15):2511–25.

    Article  CAS  PubMed  Google Scholar 

  11. Spaide RF, Chang LK, Klancnik JM et al. Prospective study of intravitreal ranibizumab as a treatment for decreased visual acuity secondary to central retinal vein occlusion. Am J Ophthalmol. 2009;147:298–306.

    Article  CAS  PubMed  Google Scholar 

  12. Pieramici DJ, Rabena M, Castellarin AA et al. Ranibizumab for the treatment of macular edema associated with perfused central retinal vein occlusions. Ophthalmology. 2008;115:e47–54.

    Article  PubMed  Google Scholar 

  13. Dafer RM, Schneck M, Friberg TR, Jay WM. Intravitreal ranibizumab and bevacizumab: a review of risk. Semin Ophthalmol. 2007;22(3):201–4.

    Article  PubMed  Google Scholar 

  14. Rosenfeld PJ, Rich RM, Lalwani GA. Ranibizumab: phase III clinical trial results. Ophthalmol Clin N Am. 2006;19(3):361–72.

    Google Scholar 

  15. Jager RD, Aiello LP, Patel SC, Cunningham Jr ET. Risks of intravitreous injection: a comprehensive review. Retina. 2004;24(5):676–98.

    Article  PubMed  Google Scholar 

  16. Berinstein DM. New approaches in the management of diabetic macular edema. Tech Ophthalmol. 2003;1:106–13.

    Article  Google Scholar 

  17. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des. 2009;15(23):2724–50.

    Article  CAS  PubMed  Google Scholar 

  18. Lee SY, Chee SP. Surodex after phacoemulsification. J Cataract Refract Surg. 2005;31(8):1479–80.

    Article  PubMed  Google Scholar 

  19. Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–216.

    Article  CAS  PubMed  Google Scholar 

  20. Lee SS, Yuan P, Robinson MR. Ocular implants for drug delivery. In: Wnek GE, Bowlin GL, editors. Encyclopedia of biomaterials and biomedical engineering. New York: Informa Healthcare USA, Inc; 2008. p. 2259–69.

    Google Scholar 

  21. Davis JL, Gilger BC, Robinson MR. Novel approaches to ocular drug delivery. Curr Opin Mol Ther. 2004;6(2):195–205.

    CAS  PubMed  Google Scholar 

  22. Chu C-C. Biodegradable polymers: an overview. In: Wnek GE, Bowlin GL, editors. Encyclopedia of biomaterials and biomedical engineering. New York: Informa Healthcare USA, Inc; 2008. p. 195–206.

    Google Scholar 

  23. Kimura H, Ogura Y. Biodegradable polymers for ocular drug delivery. Ophthalmologica. 2001;215(3):143–55.

    Article  CAS  PubMed  Google Scholar 

  24. Avgoustakis K. Polylactic-co-glycolic acid (PLGA). In: Wnek GE, Bowlin GL, editors. Encyclopedia of biomaterials and biomedical engineering. New York: Informa Healthcare USA, Inc; 2008. p. 2259–69.

    Google Scholar 

  25. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24.

    Article  PubMed  Google Scholar 

  26. Landes C, Ballon A, Roth C. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL) LA Implants: a 5-year inpatient biocompatibility and degradation experience. Plast Reconstr Surg. 2006;117(7):2347–60.

    Article  CAS  PubMed  Google Scholar 

  27. Holmes R, Cohen S, Cornwall G, Thomas K, Kleinhenz K, Beckett M. MacroPore resorbable devices in craniofacial surgery. Clin Plast Surg. 2004;31:393–406.

    Article  PubMed  Google Scholar 

  28. Streilein JW. Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukocyte Biol. 2003;74:179–85.

    Article  CAS  PubMed  Google Scholar 

  29. Moritera T, Ogura Y, Honda Y, Wada R, Hyon SH, Ikada Y. Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci. 1991;32:1785–90.

    CAS  PubMed  Google Scholar 

  30. Moritera T, Ogura Y, Yoshimura N, Honda Y, Wada R, Hyon SH et al. Biodegradable microspheres containing adriamycin in the treatment of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 1992;33:3125–30.

    CAS  PubMed  Google Scholar 

  31. Giordano GG, Chevez-Barrios P, Refojo MF, Garcia CA. Biodegradation and tissue reaction to intravitreous biodegradable poly(D, L-lactic-co-glycolic)acid microspheres. Curr Eye Res. 1995;9:761–8.

    Article  Google Scholar 

  32. Lacrisert [prescribing information]. Lawrenceville, NJ, USA: Aton Pharma, Inc; 2007. Available at: http://www.lacrisert.com/pdfs/Lacrisert_PI.pdf. Accessed 04/07/2010.

  33. Chang D, Garcia I, Hunkeler J, Minas T. Phase II results of an intraocular steroid delivery system for cataract surgery. Ophthalmology. 1999;106:1172–7.

    Article  CAS  PubMed  Google Scholar 

  34. Tan DT, Chee SP, Lim L, Lim AS. Randomized clinical trial of a new dexamethasone delivery system (Surodex) for treatment of post-cataract surgery inflammation. Ophthalmology. 1999;106(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  35. Tan DT, Chee SP, Lim L, Theng J, Van Ede M. Randomized clinical trial of Surodex steroid drug delivery system for cataract surgery: anterior versus posterior placement of two Surodex in the eye. Ophthalmology. 2001;108:2172–81.

    Article  CAS  PubMed  Google Scholar 

  36. Seah SK, Husain R, Gazzard G, Lim MC, Hoh ST, Oen FT et al. Use of Surodex in phacotrabeculectomy surgery. Am J Ophthalmol. 2005;139(5):927–8.

    Article  CAS  PubMed  Google Scholar 

  37. Haller JA, Dugel P, Weinberg DV, Chou C, Whitcup SM. Evaluation of the safety and performance of an applicator for a novel intravitreal dexamethasone drug delivery system for the treatment of macular edema. Retina. 2009;29(1):46–51.

    Article  PubMed  Google Scholar 

  38. Kuppermann BD, Blumenkranz MS, Haller JA, Williams GA, Weinberg DV, Chou C et al. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol. 2007;125(3):309–17.

    Article  CAS  PubMed  Google Scholar 

  39. Hu M, Huang G, Karasina F, Wong VG. Verisome™, a novel injectable, sustained release, biodegradable, intraocular drug delivery system and triamcinolone acetonide. Invest Ophthalmol Vis Sci. 2008;49:E-Abstract 5627. http://abstracts.iovs.org/cgi/content/abstract/49/5/5627.

    Google Scholar 

  40. Lim JI, Wieland MR, Fung A, Hung DY, Wong V. A phase 1 study evaluating the safety and evidence of efficacy of IBI-20089, a triamcinolone intravitreal injection formulated with the Verisome™ drug delivery technology, in patients with cystoid macular edema. Invest Ophthalmol Vis Sci. 2009;50:E-Abstract 5395. http://abstracts.iovs.org/cgi/content/abstract/50/5/5395.

    Article  Google Scholar 

  41. Dong X, Shi W, Yuan G, Xie L, Wang S, Lin P. Intravitreal implantation of the biodegradable cyclosporin a drug delivery system for experimental chronic uveitis. Graefes Arch Clin Exp Ophthalmol. 2006;244(4):492–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kagaya F, Usui T, Kamiya K, Ishii Y, Tanaka S, Amano S et al. Intraocular dexamethasone delivery system for corneal transplantation in an animal model. Cornea. 2002;21(2):200–2.

    Article  PubMed  Google Scholar 

  43. Shi W, Liu T, Xie L, Wang S. FK506 in a biodegradable glycolide-co-clatide-co-caprolactone polymer for prolongation of corneal allograft survival. Curr Eye Res. 2005;30(11):969–76.

    Article  CAS  PubMed  Google Scholar 

  44. Einmahl S, Behar-Cohen F, D’Hermies F, Rudaz S, Tabatabay C, Renard G et al. A new poly(ortho ester)-based drug delivery system as an adjunct treatment in filtering surgery. Invest Ophthalmol Vis Sci. 2001;42(3):695–700.

    CAS  PubMed  Google Scholar 

  45. Gorle AP, Gattani SG. Design and evaluation of polymeric ocular drug delivery system. Chem Pharm Bull (Tokyo). 2009;57(9):914–9.

    Article  CAS  Google Scholar 

  46. Wada R, Hyon SH, Ikada Y. Injectable microspheres with controlled drug release for glaucoma filtering surgery. Invest Ophthalmol Vis Sci. 1992;33:3436–41.

    PubMed  Google Scholar 

  47. Beck LR, Cowsar DR, Lewis DH, Cosgrove Jr RJ, Riddle CT, Lowry SR et al. A new long-acting injectable microcapsule system for the administration of progesterone. Fertil Steril. 1979;31:545–51.

    CAS  PubMed  Google Scholar 

  48. Carrasquillo KG, Ricker JA, Rigas IK et al. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci. 2003;44:290–9.

    Article  PubMed  Google Scholar 

  49. Genta I, Conti B, Perugini P, Pavanetto F, Spadaro A, Puglisi G. Bioadhesive microspheres for ophthalmic administration of acyclovir. J Pharm Pharmacol. 1997;49(8):737–42.

    CAS  PubMed  Google Scholar 

  50. Di Colo G, Zambito Y, Burgalassi S, Serafini A, Saettone MF. Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). Int J Pharm. 2002;248(1–2):115–22.

    Article  PubMed  Google Scholar 

  51. Bourges J-L, Gautier SE, Delie F et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci. 2003;44:3562–9.

    Article  PubMed  Google Scholar 

  52. de Kozak Y, Andrieux K, Villarroya H et al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol. 2004;34:3702–12.

    Article  PubMed  Google Scholar 

  53. Alvarez-Lorenzo C, Hiratani H, Concheiro A. Contact lenses for drug delivery: achieving sustained release with novel systems. Am J Drug Deliv. 2006;4(3):131–51.

    Article  CAS  Google Scholar 

  54. Schultz CL, Poling TR, Mint JO. A medical device/drug delivery system for treatment of glaucoma. Clin Exp Optom. 2009;92(4):343–8.

    Article  PubMed  Google Scholar 

  55. Xinming L, Yingde C, Lloyd AW et al. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review. Cont Lens Anterior Eye. 2007;31(2):57–64.

    Article  PubMed  Google Scholar 

  56. Mohammad DA, Sweet BV, Elner SG. Retisert: is the new advance in treatment of uveitis a good one? Ann Pharmacother. 2007;41(3):449–54.

    Article  CAS  PubMed  Google Scholar 

  57. Mansoor S, Kuppermann BD, Kenney MC. Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res. 2009;26(4):770–84.

    Article  CAS  PubMed  Google Scholar 

  58. Arjona A, Vasiliou S, Cole P. Highlights from the Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO) 2009. Drugs Future. 2009;34(11):925.

    Google Scholar 

  59. Macoul KL, Pavan-Langston D. Pilocarpine Ocusert system for sustained control of ocular hypertension. Arch Ophthalmol. 1975;93:587–90.

    CAS  PubMed  Google Scholar 

  60. Quigley HA, Pollack IP, Harbin Jr TS. Pilocarpine Ocuserts: long-term clinical trials and selected pharmacodynamics. Arch Ophthalmol. 1975;93:771–5.

    CAS  PubMed  Google Scholar 

  61. Chien YW. Novel drug delivery systems. 2nd ed. New York: Marcel Dekker; 1992.

    Google Scholar 

  62. Kedhar SR, Jabs DA. Cytomegalovirus retinitis in the era of highly active antiretroviral therapy. Herpes. 2007;14:66–71.

    PubMed  Google Scholar 

  63. Kane FE, Burdan J, Cutino A, Green KE. Iluvien: a new sustained delivery technology for posterior eye disease. Expert Opin Drug Deliv. 2008;5(9):1039–46.

    Article  CAS  PubMed  Google Scholar 

  64. Emerich DF, Thanos CG. NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr Opin Mol Ther. 2008;10(5):506–15.

    CAS  PubMed  Google Scholar 

  65. Thanos CG, Bell WJ, O’Rourke P, Kauper K, Sherman S, Stabila P et al. Sustained secretion of ciliary neurotrophic factor to the vitreous, using the encapsulated cell therapy-based NT-501 intraocular device. Tissue Eng. 2004;10(11–12):1617–22.

    Article  CAS  PubMed  Google Scholar 

  66. Tao W, Wen R, Laties A, Aguirre GD. Cell-based delivery systems: development of encapsulated cell technology for ophthalmic applications. In: Jaffe GJ, Ashton P, editors. Intraocular drug delivery. New York: Taylor & Francis Group; 2006. p. 111–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.S., Hughes, P., Ross, A.D. et al. Biodegradable Implants for Sustained Drug Release in the Eye. Pharm Res 27, 2043–2053 (2010). https://doi.org/10.1007/s11095-010-0159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0159-x

KEY WORDS

Navigation