Skip to main content

Advertisement

Log in

The Use of Amino Acid Linkers in the Conjugation of Paclitaxel with Hyaluronic Acid as Drug Delivery System: Synthesis, Self-Assembled Property, Drug Release, and In Vitro Efficiency

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A cell-targeted prodrug with good self-assembly properties in aqueous solution was prepared for the anti-cancer drug paclitaxel, offering great potential for further investigation.

Methods

We synthesized hyaluronic acid (HA) with a specific targeting property as a carrier to conjugate with paclitaxel by inserting different amino acids as spacers, including valine, leucine, and phenylalanine, respectively. The structure of HA-amino acid-paclitaxel conjugates was characterized by 1H NMR and GPC. The loading weight and hydrolysis rate were detected by UV and HPLC, respectively. Their morphology and mean diameter were investigated by SEM and DLS, respectively. The biological activity of HA-amino acid-paclitaxel conjugates was measured by MTT assay and flow cytometry using MCF-7 cells.

Results

The use of amino acids as spacers between drug and carrier facilitated paclitaxel release from the conjugates. Their morphology demonstrated that the prepared prodrugs could self-assemble to form nanoparticles with a narrow size distribution and spherical shape. Furthermore, the prodrugs exhibited increased cytotoxicity as compared to free drug. Flow cytometry analysis showed that MCF-7 cells treated with conjugates were arrested in the G2/M phase of the cell cycle.

Conclusions

Prodrugs synthesized as HA-amino acid-paclitaxel conjugates exhibited enhanced cytotoxicity in breast cancer cell lines and hence may have potential application as tumor-specific nanoparticulate therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971;93:2325–7.

    Article  CAS  PubMed  Google Scholar 

  2. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665–7.

    Article  CAS  PubMed  Google Scholar 

  3. Rowinsky EK, Donehower RC, Jones RJ, Tucker RW. Microtubule changes and cytotoxicity in leukemic cell lines treated with taxol. Cancer Res. 1988;48:4093–100.

    CAS  PubMed  Google Scholar 

  4. Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, et al. Hypersensitivity reactions from taxol. J Clin Oncol. 1990;8:1263–8.

    CAS  PubMed  Google Scholar 

  5. Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235:179–92.

    Article  CAS  PubMed  Google Scholar 

  6. Francesco MV, Oddone S, Gianfranco P, Raniero M, Ruth D. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjugate Chem. 2005;16:775–84.

    Article  Google Scholar 

  7. Hsiangfa L, Sungching C, Meichin C, Powei L, Chiungtong C, Hsingwen S. Paclitaxel-loaded poly (γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system against cultured HepG2 cells. Bioconjugate Chem. 2006;17:291–9.

    Article  Google Scholar 

  8. Shu-ichi S, Masahiro K, Hiroshi K, To-ru K. Complete regression of xenografted human carcinomas by a paclitaxel-carboxymethyl dextran conjugate (AZ10992). J Control Release. 2007;117:40–50.

    Article  Google Scholar 

  9. Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Controlled Release. 2000;63:19–30.

    Article  CAS  Google Scholar 

  10. Hyukjin L, Kyuri L, Tae PG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjugate Chem. 2008;19:1319–25.

    Article  Google Scholar 

  11. Tarr BD, Sambandan TG, Yalkowsky SH. A new parenteral emulsion for the administration of taxol. Pharm Res. 1987;4:162–5.

    Article  CAS  PubMed  Google Scholar 

  12. Bae KH, Lee Y, Park TG. Oil-encapsulating PEO-PPO-PEO shell crosslinked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules. 2007;8:650–6.

    Article  CAS  PubMed  Google Scholar 

  13. Maeda H, Seymour LW, Miyamoto Y. Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjugate Chem. 1992;3:351–62.

    Article  CAS  Google Scholar 

  14. Jian Y, Fu-Qiang H, Yong ZD, Hong Y. Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel. Biomacromolecules. 2007;8:2450–6.

    Article  Google Scholar 

  15. Shuliang L, Belinda B, JoEllen W, Andre FP. Self-assembled poly (butadiene)-b-poly (ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol Prog. 2007;23:278–85.

    Article  Google Scholar 

  16. Hyun JL, Hye YN, Byung HL, Dae JK, Jai YK, Jong-sang P. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Biotechnol Prog. 2007;23:693–7.

    Article  Google Scholar 

  17. Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Controlled Release. 2007;117:380–6.

    Article  CAS  Google Scholar 

  18. Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials. 2006;27:4079–86.

    Article  CAS  PubMed  Google Scholar 

  19. Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Ectopic bone formation in collagen sponge self-assembled peptide-amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor. Biomaterials. 2006;27:5089–98.

    Article  CAS  PubMed  Google Scholar 

  20. Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H, Tabata Y. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials. 2006;27:5836–44.

    Article  CAS  PubMed  Google Scholar 

  21. Hosseinkhani H, Hosseinkhani M, Kobayashi H. Design of tissue-engineered nanoscaffold through self-assembly of peptide amphiphile. J Bioact Compat Polym. 2006;21:277–96.

    Article  CAS  Google Scholar 

  22. Entwistle J, Hall CL, Turley EA. HA receptors: regulators of signalling to the cytoskeleton. J Cell Biochem. 1996;61:569–77.

    Article  CAS  PubMed  Google Scholar 

  23. Stern R. Association between cancer and “acid mucopolysaccharides”: an old concept comes of age, finally. Semin Cancer Biol. 2008;18:238–43.

    Article  CAS  PubMed  Google Scholar 

  24. Hua Q, Knudson CB, Knudson WJ. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J Cell Sci. 1993;106:365–75.

    CAS  PubMed  Google Scholar 

  25. Day AJ, Prestwich GD. Hyaluronan-binding proteins: tying up the giant. J Biol Chem. 2002;277:4585–8.

    Article  CAS  PubMed  Google Scholar 

  26. Toole BP, Slomiany MG. Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells. Semin Cancer Biol. 2008;18:244–50.

    Article  CAS  PubMed  Google Scholar 

  27. Coradini D, Pellizzaro C, Miglierini G, Daidone MG, Perbellini A. Hyaluronic acid as drug delivery for sodium butyrate: improvement of the anti-proliferative activity on a breast-cancer cell line. Int J Cancer. 1999;81:411–6.

    Article  CAS  PubMed  Google Scholar 

  28. Coradini D, Zorzet S, Rossin R, Scarlata I, Pellizzaro C, Turrin C, et al. Inhibition of hepatocellular carcinomas in vitro and hepatic metastases in vivo in mice by the histone deacetylase inhibitor HA-But. Clin Cancer Res. 2004;10:4822–30.

    Article  CAS  PubMed  Google Scholar 

  29. Speranzaa A, Pellizzaroa C, Coradini D. Hyaluronic acid butyric esters in cancer therapy. Anticancer Drug Des. 2005;16:373–9.

    Article  Google Scholar 

  30. Luo Y, Bernshaw NJ, Lu Z, Kopecek J, Prestwich GD. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res. 2002;19:396–402.

    Article  CAS  PubMed  Google Scholar 

  31. Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjugate Chem. 1999;10:755–63.

    Article  CAS  Google Scholar 

  32. Luo Y, Ziebell MR, Prestwich GD. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules. 2000;1:208–18.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Xin D, Liu K, Xiang J. Heparin-paclitaxel conjugates using mixed anhydride as intermediate: synthesis, influence of polymer structure on drug release, anticoagulant activity and in vitro efficiency. Pharm Res. 2009;26:785–93.

    Article  PubMed  Google Scholar 

  34. Coradini D, Pellizzaro C, Abolafio G, Bosco M, Scarlata I, Cantoni S, et al. Hyaluronic-acid butyric esters as promising antineoplastic agents in human lung carcinoma: A preclinical study. Invest New Drug. 2004;22:207–17.

    Article  CAS  Google Scholar 

  35. Shu-ichi S, Masahiro K, Hiroshi K, To-ru K. Paclitaxel delivery systems: the use of amino acid linkers in the conjugation of paclitaxel with carboxymethyldextran to create prodrugs. Biol Pharm Bull. 2002;25:632–41.

    Article  Google Scholar 

  36. Peniche C, Arguelles-Monal W, Davidenko N, Sastre R, Gallardo A, Roman J. Self-curing membranes of chitosan/ PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation. Biomaterials. 1999;20:1869–78.

    Article  CAS  PubMed  Google Scholar 

  37. Chun L, Dong-fang Y, Robert AN, Fernando CL, Clifton S, Nancy H, et al. Complete regression of well-established tumors using a novel water-soluble Poly(l-Glutamic acid)-paclitaxel conjugate. Cancer Res. 1998;58:2404–9.

    Google Scholar 

  38. Rosler A, Vandermeulen GWM, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev. 2001;53:95–108.

    Article  CAS  PubMed  Google Scholar 

  39. Hosseinkhani H, Aoyama T, Yamamoto S, Ogawa O, Tabata Y. In vitro transfection of plasmid DNA by amine derivatives of gelatin accompanied with ultrasound irradiation. Pharm Res. 2002;19:1471–9.

    Article  CAS  PubMed  Google Scholar 

  40. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y. Tumor targeting of gene expression through metal-coordinated conjugation with dextran. J Controlled Release. 2003;88:297–312.

    Article  CAS  Google Scholar 

  41. Hosseinkhani H, Tabata Y. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin. J Controlled Release. 2004;97:157–71.

    Article  CAS  Google Scholar 

  42. Hosseinkhani H, Azzam T, Tabata Y, Domb AJ. Dextran-spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther. 2004;11:194–203.

    Article  CAS  PubMed  Google Scholar 

  43. Hosseinkhani H, Tabata Y. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran. J Controlled Release. 2005;108:540–56.

    Article  CAS  Google Scholar 

  44. Nicolaou KC, Rlemer C, Kerr MA, Rideout D, Wrasidlo E. Design, synthesis and biological activity of protaxols. Nature. 1993;364:464–6.

    Article  CAS  PubMed  Google Scholar 

  45. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci. 1980;77:1561–5.

    Article  CAS  PubMed  Google Scholar 

  46. Jordan MA, Wendll K, Gardiner S, Derry WB, Copp H, Wilson L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 1996;56:816–25.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENT

The authors are grateful for the financial support of 985 Foundation of Ministry of Education. This work was supported by the National Natural Science Foundation of China (Grant No. 20472018), by the Natural Science Foundation of Hunan (Key Project No. 07JJ3019), by the Department of Science and Technology of Changsha (Grant No. K082152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiannan Xiang.

Additional information

Dingcheng Xin and Ying Wang have equal contribution in this work and are both equally considered as first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, D., Wang, Y. & Xiang, J. The Use of Amino Acid Linkers in the Conjugation of Paclitaxel with Hyaluronic Acid as Drug Delivery System: Synthesis, Self-Assembled Property, Drug Release, and In Vitro Efficiency. Pharm Res 27, 380–389 (2010). https://doi.org/10.1007/s11095-009-9997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9997-9

KEY WORDS

Navigation