Skip to main content
Log in

Chitosan/TPP and Chitosan/TPP-hyaluronic Acid Nanoparticles: Systematic Optimisation of the Preparative Process and Preliminary Biological Evaluation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Chitosan is one of the most sought-after components for designing nanoparticles for drug delivery applications. However, despite the large number of studies, reproducibility is often an issue; generally more attention should be focused on purity and precise characterization of the starting material, as well as on the development of robust preparative procedures.

Methods

Using a rational experimental design, we have studied the influence of a number of orthogonal factors (pH, concentrations, ratios of components, different methods of mixing) in the preparation of chitosan/triphosphate (TPP) nanoparticles and in their coating with hyaluronic acid (HA), aiming at the minimisation of size polydispersity, the maximisation of zeta potential and long-term stability, and at the control over average nanoparticle size.

Results and conclusion

Three optimised nanoparticles have been developed (two uncoated and one HA-coated) and their toxicity on fibroblasts and macrophages has been evaluated: experiments showed the beneficial character of HA-coating in the reduction of toxicity (IC50 raised from 0.7–0.8 mg/mL to 1.8 mg/mL) and suggested that the uncoated chitosan/TPP nanoparticles had toxic effects following internalisation rather than membrane disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tirelli N. (Bio)Responsive nanoparticles. Curr Opin Colloid Interface Sci. 2006;11:210–6. doi:10.1016/j.cocis.2006.09.002.

    CAS  Google Scholar 

  2. Rehor A, Hubbell JA, Tirelli N. Oxidation-sensitive polymeric nanoparticles. Langmuir 2005;21:411–7. doi:10.1021/la0478043.

    Article  PubMed  CAS  Google Scholar 

  3. Brannon-Peppasand L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–59. doi:10.1016/j.addr.2004.02.014.

    Article  Google Scholar 

  4. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33:448–77. doi:10.1016/j.progpolymsci.2008.01.002.

    Article  CAS  Google Scholar 

  5. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126:187–204. doi:10.1016/j.jconrel.2007.12.017.

    Article  PubMed  CAS  Google Scholar 

  6. Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev. 2008;60:548–58. doi:10.1016/j.addr.2007.10.008.

    Article  PubMed  CAS  Google Scholar 

  7. Peer D, Karp JM, Hong S, FaroKhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology. 2007;2:751–60. doi:10.1038/nnano.2007.387.

    Article  PubMed  CAS  Google Scholar 

  8. Vasirand JK, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev. 2007;59:718–28. doi:10.1016/j.addr.2007.06.003.

    Article  Google Scholar 

  9. van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res. 2007;24:1405–14. doi:10.1007/s11095-007-9284-6.

    Article  PubMed  Google Scholar 

  10. Goldberg M, Langer R, Jia XQ. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18:241–68. doi:10.1163/156856207779996931.

    Article  PubMed  CAS  Google Scholar 

  11. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo-polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301. doi:10.1073/pnas.92.16.7297.

    Article  PubMed  CAS  Google Scholar 

  12. Cho YW, Kim JD, Park K. Pollycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol. 2003;55:721–34. doi:10.1211/002235703765951311.

    Article  PubMed  CAS  Google Scholar 

  13. Murthy N, Robichaud JR, Tirrell DA, Stayton PS, Hoffman AS. The design and synthesis of polymers for eukaryotic membrane disruption. J Control Release. 1999;61:137–43. doi:10.1016/S0168-3659(99)00114-5.

    Article  PubMed  CAS  Google Scholar 

  14. Chen R, Khormaee S, Eccleston ME, Slater NKH. The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides. Biomaterials 2009;30:1954–61. doi:10.1016/j.biomaterials.2008.12.036.

    Article  PubMed  CAS  Google Scholar 

  15. Passirani C, Barratt G, Devissaguet JP, Labarre D. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm Res. 1998;15:1046–50. doi:10.1023/A:1011930127562.

    Article  PubMed  CAS  Google Scholar 

  16. Higuchi A, Shirano K, Harashima M, Yoon BO, Hara M, Hattori M, et al. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 2002;23:2659–66. doi:10.1016/S0142-9612(01)00406-9.

    Article  PubMed  CAS  Google Scholar 

  17. Mequanint K, Patel A, Bezuidenhout D. Synthesis, swelling behavior, and biocompatibility of novel physically cross-linked polyurethane-block-poly(glycerol methacrylate) hydrogels. Biomacromolecules 2006;7:883–891. doi:10.1021/bm0507047.

    Article  PubMed  CAS  Google Scholar 

  18. Leeand JY, Spicer AP. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol. 2000;12:581–6. doi:10.1016/S0955-0674(00)00135-6.

    Article  Google Scholar 

  19. Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, et al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices. 2008;10:321–8. doi:10.1007/s10544-007-9139-2.

    Article  PubMed  CAS  Google Scholar 

  20. Basarkar A, Devineni D, Palaniappan R, Singh J. Preparation, characterization, cytotoxicity and transfection efficiency of poly(dl-lactide-co-glycolide) and poly(dl-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA. Int J Pharm. 2007;343:247–54. doi:10.1016/j.ijpharm.2007.05.023.

    Article  PubMed  CAS  Google Scholar 

  21. Rehor A, Schmoekel H, Tirelli N, Hubbell JA. Functionalization of polysulfide nanoparticles and their performance as circulating carriers. Biomaterials 2008;29:1958–66. doi:10.1016/j.biomaterials.2007.12.035.

    Article  PubMed  CAS  Google Scholar 

  22. Etienne O, Schneider A, Taddei C, Richert L, Schaaf P, Voegel JC, et al. Degradability of polysaccharides multilayer films in the oral environment: an in vitro and in vivo study. Biomacromolecules 2005;6:726–33. doi:10.1021/bm049425u.

    Article  PubMed  CAS  Google Scholar 

  23. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100:5–28. doi:10.1016/j.jconrel.2004.08.010.

    Article  PubMed  CAS  Google Scholar 

  24. Katasand H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115:216–225. doi:10.1016/j.jconrel.2006.07.021.

    Article  Google Scholar 

  25. Luangtana-anan M, Opanasopit P, Ngawhirunpat T, Nunthanid J, Sriamornsak P, Limmatvapirat S, et al. Effect of chitosan salts and molecular weight on a nanoparticulate carrier for therapeutic protein. Pharm Dev Technol. 2005;10:189–96. doi:10.1081/PDT-200054388.

    PubMed  CAS  Google Scholar 

  26. Deng QY, Zhou CR, Luo BH. Preparation and characterization of chitosan nanoparticles containing lysozyme. Pharm Biol. 2006;44:336–42. doi:10.1080/13880200600746246.

    Article  CAS  Google Scholar 

  27. Dassand CR, Choong PFM. The use of chitosan formulations in cancer therapy. J Microencapsul. 2008;25:275–9. doi:10.1080/02652040801970461.

    Article  Google Scholar 

  28. Van Beek M, Jones L, Sheardown H. Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials 2008;29:780–9. doi:10.1016/j.biomaterials.2007.10.039.

    Article  PubMed  Google Scholar 

  29. Johansson JA, Halthur T, Herranen M, Soderberg L, Elofsson U, Hilborn J. Build-up of collagen and hyaluronic acid polyelectrolyte multilayers. Biomacromolecules 2005;6:1353–9. doi:10.1021/bm0493741.

    Article  PubMed  CAS  Google Scholar 

  30. Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ. A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 2006;7:1610–22. doi:10.1021/bm060044l.

    Article  PubMed  CAS  Google Scholar 

  31. Richert L, Lavalle P, Payan E, Shu XZ, Prestwich GD, Stoltz JF, et al. Layer by layer buildup of polysaccharide films: Physical chemistry and cellular adhesion aspects. Langmuir 2004;20:448–58. doi:10.1021/la035415n.

    Article  PubMed  CAS  Google Scholar 

  32. Calvo P, RemunanLopez C, VilaJato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63:125–32. doi:10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  33. Janesand KA, Alonso MJ. Depolymerized chitosan nanoparticles for protein delivery: Preparation and characterization. J Appl Polym Sci. 2003;88:2769–76. doi:10.1002/app.12016.

    Article  Google Scholar 

  34. Zhang H, Oh M, Allen C, Kumacheva E. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 2004;5:2461–8. doi:10.1021/bm0496211.

    Article  PubMed  CAS  Google Scholar 

  35. Kasaai MR, Arul J, Charlet C. Intrinsic viscosity-molecular weight relationship for chitosan. J Polym Sci B Polym Phys. 2000;38:2591–8. doi:10.1002/1099-0488(20001001)38:19<2591::AID-POLB110>3.0.CO;2-6.

    Article  CAS  Google Scholar 

  36. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4.

    Article  PubMed  CAS  Google Scholar 

  37. Zange R, Li Y, Kissel T. Biocompatibility testing of ABA triblock copolymers consisting of poly(-lactic-co-glycolic acid) A blocks attached to a central poly(ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblasts cell culture model. J Control Release. 1998;56:249–58. doi:10.1016/S0168-3659(98)00093-5.

    Article  PubMed  CAS  Google Scholar 

  38. He X, Ma J, Mercado AE, Xu W, Jabbari E. Cytotoxicity of paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Pharm Res. 2008;25:1552-1562.

    Google Scholar 

  39. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003;24:1121–31. doi:10.1016/S0142-9612(02)00445-3.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Z, Huey Lee S, Feng SS. Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials 2007;28:1889–99. doi:10.1016/j.biomaterials.2006.12.018.

    Article  PubMed  Google Scholar 

  41. Alonso JL, Mascellaro S, Moreno Y, Ferrus MA, Hernandez J. Double-staining method for differentiation of morphological changes and membrane integrity of Campylobacter coli cells. Appl Environ Microbiol. 2002;68:5151–4. doi:10.1128/AEM.68.10.5151-5154.2002.

    Article  PubMed  CAS  Google Scholar 

  42. Valea FA, Haskill S, Moore DH, Fowler WC Jr. Immunohistochemical analysis of alpha 1-integrins in cervical cancer. Am J Obstet Gynecol. 1995;173:808–13. doi:10.1016/0002-9378(95)90345-3.

    Article  PubMed  CAS  Google Scholar 

  43. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Polyethylene particles of a [`]critical size' are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 1998;19:2297–302. doi:10.1016/S0142-9612(98)00140-9.

    Article  PubMed  CAS  Google Scholar 

  44. Olivier V, Rivière C, Hindié M, Duval JL, Bomila-Koradjim G, Nagel MD. Uptake of polystyrene beads bearing functional groups by macrophages and fibroblasts. Colloids Surf B Biointerfaces. 2004;33:23–31. doi:10.1016/j.colsurfb.2003.08.008.

    Article  CAS  Google Scholar 

  45. Zahr AS, Davis CA, Pishko MV. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 2006;22:8178–85. doi:10.1021/la060951b.

    Article  PubMed  CAS  Google Scholar 

  46. Biological evaluation for medical devices-part 5: tests for cytotoxicity: in vitro methods. ISO 10993-5 (EN 30993-5), (1992).

  47. Jepson MA. Advances in fluorescence imaging: opportunities for pharmaceutical science. Adv Drug Deliv Rev. 2005;57:1–4. doi:10.1016/j.addr.2004.08.001.

    Article  Google Scholar 

  48. Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 2004;21:344–53. doi:10.1023/B:PHAM.0000016249.52831.a5.

    Article  PubMed  CAS  Google Scholar 

  49. Maand ZS, Lim LY. Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm Res. 2003;20:1812–9. doi:10.1023/B:PHAM.0000003379.76417.3e.

    Article  Google Scholar 

  50. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun. 2007;353:26–32. doi:10.1016/j.bbrc.2006.11.135.

    Article  PubMed  CAS  Google Scholar 

  51. Ruponen M, Honkakoski P, Tammi M, Urtti A. Cell-surface glycosaminoglycans inhibit cation-mediated gene transfer. J Gene Med. 2004;6:405–14. doi:10.1002/jgm.522.

    Article  PubMed  CAS  Google Scholar 

  52. Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Muller R, et al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 2006;27:108–18. doi:10.1016/j.biomaterials.2005.04.041.

    Article  PubMed  CAS  Google Scholar 

  53. Peerand D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer. 2004;108:780–9. doi:10.1002/ijc.11615.

    Article  Google Scholar 

  54. Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004;58:327–41. doi:10.1016/j.ejpb.2004.02.016.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Dr. Philip Day (School of Translational Medicine, University of Manchester) for the helpful discussions. Financial support from EPSRC (grant No. EP/C543564/1 and Advanced Research Fellowship for NT) and from the University of Naples Federico II is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Tirelli.

Additional information

Alessandro Nasti and Noha M. Zaki have equally contributed to this manuscript.

Electronic supplementary material

ESM 1

Supporting information (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasti, A., Zaki, N.M., de Leonardis, P. et al. Chitosan/TPP and Chitosan/TPP-hyaluronic Acid Nanoparticles: Systematic Optimisation of the Preparative Process and Preliminary Biological Evaluation. Pharm Res 26, 1918–1930 (2009). https://doi.org/10.1007/s11095-009-9908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9908-0

KEY WORDS

Navigation