Skip to main content
Log in

Selective Adhesion of Nanoparticles to Inflamed Tissue in Gastric Ulcers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 13 March 2009

Abstract

Purpose

Gastrointestinal deposition of nanoparticles was examined after oral administration to mice suffering from an experimental gastric ulcer model. Local drug delivery could reduce side effects and would be a distinct improvement compared to existing therapeutic approaches, e.g. in the local therapy of Helicobacter pylori.

Methods

A gastric ulcer was induced to Swiss mice by acetic acid injection. Fluorescent polystyrene particles with a nominal size of 50, 200, and 750 nm were administered orally for 3 or 5 days and particle adhesion in the gastrointestinal tract analyzed.

Results

In the ulcerated regions, an enhanced particle adhesion was observed compared to healthy controls. A size dependency of the deposition was found which further increased with a prolonged treatment period. For 750 nm particles only fair adhesion was observed (control, 2.0 ± 1.4%; ulcer, 4.5 ± 0.7% of daily administered particle mass), while already 200 nm particles showed higher binding (control, 2.9 ± 1.3%; ulcer, 7.8 ± 1.2%). Highest relative adhesion was found for 50 nm particles (control, 2.8 ± 1.3%; ulcer, 10.0 ± 1.5%). The targeting index of gastric ulcer versus healthy control was nearly constant around 2 after 3 days treatment, but increased distinctly for smaller particles after 5 days.

Conclusions

The use of sub-micron sized carriers holds promise for the targeted delivery of drugs to the ulcerated mucosal areas in the stomach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. E. Crabtree. Immune and inflammatory responses to Helicobacter pylori infection. Scand. J. Gastroenterol. Suppl. 215:3–10 (1996). doi:10.3109/00365529609094526.

    Article  PubMed  CAS  Google Scholar 

  2. P. Correa. Helicobacter pylori and gastric carcinogenesis. Am. J. Surg. Pathol. 19(Suppl 1):S37–S43 (1995).

    PubMed  Google Scholar 

  3. Y. Tabata, and Y. Ikada. Phagocytosis of polymer microspheres by macrophages. Adv. Polym. Sci. 94:107–141 (1990). doi:10.1007/BFb0043062.

    Article  CAS  Google Scholar 

  4. A. Lamprecht, U. Schäfer, and C. M. Lehr. Size dependent targeting of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res. 18:788–793 (2001). doi:10.1023/A:1011032328064.

    Article  PubMed  CAS  Google Scholar 

  5. A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C. M. Lehr. Biodegradable nanoparticles for the targeted drug delivery in the treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther. 299:775–781 (2001).

    PubMed  CAS  Google Scholar 

  6. A. Lamprecht, H. Yamamoto, H. Takeuchi, and Y. Kawashima. Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J. Pharmacol. Exp. Ther. 315:196–202 (2005). doi:10.1124/jpet.105.088146.

    Article  PubMed  CAS  Google Scholar 

  7. R. B. Umamaheshwari, S. Ramteke, and N. K. Jain. Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model. AAPS PharmSciTech. 5:E32 (2004). doi:10.1208/pt050232.

    Article  PubMed  CAS  Google Scholar 

  8. K. Dillen, C. Bridts, P. Van der Veken, P. Cos, J. Vandervoort, K. Augustyns, W. Stevens, and A. Ludwig. Adhesion of PLGA or Eudragit/PLGA nanoparticles to Staphylococcus and Pseudomonas. Int. J. Pharm. 349:234–240 (2008). doi:10.1016/j.ijpharm.2007.07.041.

    Article  PubMed  CAS  Google Scholar 

  9. Y. I. Jeong, H. S. Na, D. H. Seo, D. G. Kim, H. C. Lee, M. K. Jang, S. K. Na, S. H. Roh, S. I. Kim, and J. W. Nah. Ciprofloxacin-encapsulated poly(DL-lactide-co-glycolide) nanoparticles and its antibacterial activity. Int. J. Pharm. 352:317–323 (2008). doi:10.1016/j.ijpharm.2007.11.001.

    Article  PubMed  CAS  Google Scholar 

  10. J. E. Krawisz, P. Sharon, and W. F. Stenson. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Gastroenterology. 87:1344–1350 (1984).

    PubMed  CAS  Google Scholar 

  11. M. Demoy, J. P. Andreux, C. Weingarten, B. Gouritin, V. Guilloux, and P. Couvreur. Spleen capture of nanoparticles: influence of animal species and surface characteristics. Pharm. Res. 16:37–41 (1999). doi:10.1023/A:1018858409737.

    Article  PubMed  CAS  Google Scholar 

  12. S. Okabe, and K. Amagase. An overview of acetic acid ulcer models—the history and state of the art of peptic ulcer research. Biol. Pharm. Bull. 28:1321–1341 (2005). doi:10.1248/bpb.28.1321.

    Article  PubMed  CAS  Google Scholar 

  13. G. P. Morris, P. L. Beck, M. S. Herridge, W. T. Depew, M. R. Szewczuk, and J. L. Wallace. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroeneterology. 96:795–803 (1989).

    CAS  Google Scholar 

  14. G. Yue, F. F. Sun, C. Dunn, K. Yin, and P. Y. K. Wong. The 21-aminosteroid tirilazad mesylate can ameliorate inflammatory bowel disease in rats. J. Pharmacol. Exp. Ther. 276:265–270 (1996).

    PubMed  CAS  Google Scholar 

  15. M. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Levy. Gastrointestinal uptake of biodegradable microparticles: effects of particle size. Pharm. Res. 13:1838–1845 (1996). doi:10.1023/A:1016085108889.

    Article  PubMed  CAS  Google Scholar 

  16. P. U. Jani, G. W. Halbert, J. Langridge, and A. T. Florence. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J. Pharm. Pharmacol. 41:809–821 (1989).

    PubMed  CAS  Google Scholar 

  17. P. U. Jani, G. W. Halbert, J. Langridge, and A. T. Florence. Nanoparticle uptake by the ratgastrointestinal mucosa: quantitation and particle size dependency. J. Pharm. Pharmacol. 42:821–826 (1990).

    PubMed  CAS  Google Scholar 

  18. S. Sakuma, R. Sudo, N. Suzuki, H. Kikuchi, M. Akashi, and M. Hayashi. Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract. Int. J. Pharm. 177:161–172 (1999). doi:10.1016/S0378-5173(98)00346-9.

    Article  PubMed  CAS  Google Scholar 

  19. S. K. Lai, D. E. O’Hanlon, S. Harrold, S. T. Man, Y. Y. Wang, R. Cone, and J. Hanes. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. 104:1482–1487 (2007). doi:10.1073/pnas.0608611104.

    Article  PubMed  CAS  Google Scholar 

  20. B. Tirosh, and A. Rubinstein. Migration of adhesive and nonadhesive particles in the rat intestine under altered mucus secretion conditions. J. Pharm. Sci. 87:453–456 (1998). doi:10.1021/js9703380.

    Article  PubMed  CAS  Google Scholar 

  21. R. Nagashima. Mechanisms of action of sulcrafate. J. Clin. Gastroenterol. 3:117–127 (1981).

    PubMed  CAS  Google Scholar 

  22. M. Polakovic, T. Görner, R. Gref, and E. Dellacherie. Lidocaine loaded biodegradable nanospheres. II. Modelling of drug release. J. Control. Release. 60:169–177 (1999). doi:10.1016/S0168-3659(99)00012-7.

    Article  PubMed  CAS  Google Scholar 

  23. B. Moulari, D. Pertuit, Y. Pellequer, and A. Lamprecht. The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials. 29:4554–4560 (2008). doi:10.1016/j.biomaterials.2008.08.009.

    Article  PubMed  CAS  Google Scholar 

  24. D. Pertuit, B. Moulari, T. Betz, A. Nadaradjane, D. Neumann, L. Ismaïli, B. Refouvelet, Y. Pellequer, and A. Lamprecht. 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease. J. Control. Release. 123:211–218 (2007). doi:10.1016/j.jconrel.2007.08.008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Alf Lamprecht is grateful to the “Institut Universitaire de France” for the financial support. The project was co-financed by the Region of Franche-Comté (grant VJ000610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alf Lamprecht.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-009-9872-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasani, S., Pellequer, Y. & Lamprecht, A. Selective Adhesion of Nanoparticles to Inflamed Tissue in Gastric Ulcers. Pharm Res 26, 1149–1154 (2009). https://doi.org/10.1007/s11095-009-9834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9834-1

KEY WORDS

Navigation