Skip to main content

Advertisement

Log in

Crucial Functionalizations of Carbon Nanotubes for Improved Drug Delivery: A Valuable Option?

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Amidst the myriad of Drug Delivery Systems able to enhance delivery, absorption and intracellular uptake of a bioactive molecule while protecting it from deactivation, Carbon Nanotubes (CNTs) have emerged as a recent and promising option especially in cancer therapy. This is mainly due to their unique properties, which render them extremely versatile through the incorporation of several functional groups and targeting molecules at the same time, while their natural shape allows them to selectively penetrate across biological barriers in a non-invasive way. In this expert review we aim to evaluate whether this innovative material, once chemically-modified with suitable functionalizations, can be considered as a valuable system in comparison to the already existing nanodevices. This will include the estimation of the most recent advances in the field of nanotechnology, together with a cautious evaluation of potential risks and hazards associated with the extensive use of this fascinating, but still unknown, nanomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

Abbreviations

AmB:

amphotericin B

BD:

biodistribution

BNCT:

boron capture neutron therapy

BSA:

bovine serum albumin

CNTs:

carbon nanotubes

DDS:

drug delivery systems

DNA:

deoxyribonucleic acid

DOX:

doxorubicin

EDC:

N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide

EPO:

erythropoietin

EPR:

enhanced permeability and retention effect

FA:

folic acid

f-CNTs:

functionalized carbon nanotubes

FDA:

Food and Drug Administration (USA)

HIV:

human immunodeficiency virus

HMM:

altretamine or hexamethylmelamine

IR:

infrared spectroscopy

MPS:

mononuclear phagocyte system

MTX:

methotrexate

MWCNTs:

multi-walled carbon nanotubes

NHS:

N-hydroxysuccinimide

NIR:

near-infrared

NMR:

nuclear magnetic resonance

NPs:

nanoparticles

pCNTs:

pristine carbon nanotubes

PEG:

polyethylene glycol

PK:

pharmacokinetic

RBM:

radial breathing mode

RNA:

ribonucleic acid

SDS:

sodium dodecyl sulfate

STIs:

sexually transmitted infections

SWCNTs:

single-walled carbon nanotubes

TEM:

transmission electron microscopy

UV:

ultraviolet spectroscopy

References

  1. I. Ojima. Guided molecular missiles for tumor-targeting chemotherapy—case studies using the second-generation taxoids as warheads. Acc. Chem. Res. 41:108–119 (2008). doi:10.1021/ar700093f.

    PubMed  CAS  Google Scholar 

  2. K. Y. Kim. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomed. 3:103–110 (2007).

    CAS  Google Scholar 

  3. T. Tanaka, P. Decuzzi, M. Cristofanilli, J. H. Sakamoto, E. Tasciotti, F. M. Robertson, and M. Ferrari. Nanotechnology for breast cancer therapy. Biomed. Microdevices. (2008). doi:10.1007/s10544-008-9209-0.

  4. W. E. Bawarski, E. Chidlowsky, D. J. Bharali, and S. A. Mousa. Emerging nanopharmaceuticals. Nanomed. 4:273–282 (2008).

    Google Scholar 

  5. K. K. Jain. Nanomedicine: application of nanobiotechnology in medical practice. Med. Princ. Pract. 17:89–101 (2008). doi:10.1159/000112961.

    PubMed  CAS  Google Scholar 

  6. R. P. Kulkarni. Nano-Bio-Genesis: tracing the rise of nanotechnology and nanobiotechnology as ‘big science’. J. Biomed. Discov. Collab. 2:3 (2007). doi:10.1186/1747-5333-2-3.

    PubMed  Google Scholar 

  7. D. Lu, M. G. Wientjes, Z. Lu, and J. L. Au. Tumor priming enhances delivery and efficacy of nanomedicines. J. Pharmacol. Exp. Ther. 322:80–88 (2007). doi:10.1124/jpet.107.121632.

    PubMed  CAS  Google Scholar 

  8. M. S. Arayne, and N. Sultana. Review: nanoparticles in drug delivery for the treatment of cancer. Pak J. Pharm. Sci. 19:258–268 (2006).

    PubMed  CAS  Google Scholar 

  9. P. Couvreur, and C. Vauthier. Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 23:1417–1450 (2006). doi:10.1007/s11095-006-0284-8.

    PubMed  CAS  Google Scholar 

  10. P. Grodzinski, M. Silver, and L. K. Molnar. Nanotechnology for cancer diagnostics: promises and challenges. Exp. Rev. Mol. Diagn. 6:307–318 (2006). doi:10.1586/14737159.6.3.307.

    CAS  Google Scholar 

  11. F. D. Dvorak, J. A. Nagy, J. T. Dvorak, and A. M. Dvorak. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 133:95–109 (1998).

    Google Scholar 

  12. J. K. Vasir, M. K. Maram, and V. D. Labhasetwar. Nano-systems in drug targeting: opportunities and challenges. Curr. Nanosci. 1:47–67 (2005). doi:10.2174/1573413052953110.

    CAS  Google Scholar 

  13. A. Gabizon, H. Shmeeda, and Y. Barenholz. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet. 42:419–436 (2003). doi:10.2165/00003088-200342050-00002.

    PubMed  CAS  Google Scholar 

  14. D. W. Northfelt, D. W. F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J. Clin. Pharmacol. 36:55–63 (1996).

    PubMed  CAS  Google Scholar 

  15. M. J. Glantz, K. A. Jaeckle, M. C. Chamberlain, S. Phuphanich, L. Recht, L. J. Swinnen, B. Maria, S. LaFollette, G. B. Schumann, B. F. Cole, and S. B. Howell. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin. Cancer Res. 5:3394–3402 (1999).

    PubMed  CAS  Google Scholar 

  16. R. N. Davidson, L. Di Martino, L. Gradoni, R. Giacchino, R. Russo, G. B. Gaeta, R. Pempinello, S. Scott, F. Raimondi, A. Cascio et al. Liposomal amphotericin B (AmBisome) in Mediterranean visceral leishmaniasis: a multi-centre trial. Q. J. Med. 87:75–81 (1994).

    PubMed  CAS  Google Scholar 

  17. S. Song, D. Liu, J. Peng, Y. Sun, Z. Li, J. R. Gu, and Y. Xu. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int. J. Pharm. 363:155–161 (2008). doi:10.1016/j.ijpharm.2008.07.012.

    PubMed  CAS  Google Scholar 

  18. A. Gabizon, and F. Martin. Polyethylene glycol-coated (pegylated) liposomal doxorubicin: rationale for use in solid tumours. Drugs. 54(suppl 4):15–21 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. A. Gabizon. Liposomal anthracyclines. Hematol. Oncol. Clin. North Am. 8:431–450 (1998).

    Google Scholar 

  20. D. Needham, G. Anyarambhatla, G. Kong, and M.W. Dewhirst. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 60:1197–1201 (2000).

    PubMed  CAS  Google Scholar 

  21. A. Gabizon, R. Isacson, E. Libson, B. Kaufman, B. Uziely, R. Catane, C. G. Bendor, E. Rabello, Y. Cass, T. Peretz, A. Sulkes, R. Chisin, and Y. Barenholz. Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol. 33:779–786 (1994). doi:10.3109/02841869409083948.

    PubMed  CAS  Google Scholar 

  22. K. B. Gordon, A. Tajuddin, J. Guitart, T. M. Kuzel, L. R. Eramo, and J. Vonroenn. Hand-foot syndrome associated with liposome-encapsulated doxorubicin therapy. Cancer. 75:2169–2173 (2006). doi:10.1002/1097-0142(19950415)75:8<2169::AID-CNCR2820750822>3.0.CO;2-H.

    Google Scholar 

  23. O. Lyass, B. Uziely, R. Ben Yosef, D. Tzemach, N. I. Heshing, M. Lotem, G. Brufman, and A. Gabizon. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer. 89:1037–1047 (2000). doi:10.1002/1097-0142(20000901)89:5<1037::AID-CNCR13>3.0.CO;2-Z.

    PubMed  CAS  Google Scholar 

  24. I. J. Majors, A. Myc, T. Thomas, C. B. Menhta, and J. R. Jr Baker. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules. 7:572–579 (2006). doi:10.1021/bm0506142.

    Google Scholar 

  25. D. Luo, K. Haverstick, N. Belcheva, E. Han, and W. M. Saltzman. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromol. 35:3456–3462 (2002). doi:10.1021/ma0106346.

    CAS  Google Scholar 

  26. T. D. McCarthy, P. Karellas, S. A. Henderson, M. Giannis, D. F. O’Keefe, G. Heery, J. R. Paull, B. R. Matthews, and G. Holan. Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm. 2:312–318 (2005). doi:10.1021/mp050023q.

    PubMed  CAS  Google Scholar 

  27. M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. McRee, and N. Khazanovich. Self-assembled organic nanotubes based on a cyclic peptide. Nature. 366:324–327 (1993). doi:10.1038/366324a0.

    PubMed  CAS  Google Scholar 

  28. N. Khazanovich, J. R. Granja, D. McRee, R. A. Milligan, and M. R Ghadiri. Nanoscale tubular ensembles with specific internal diameters. Design of self-assembled nanotube with a 13 Å pore. J. Am. Chem. Soc. 116:6011–6012 (1994). doi:10.1021/ja00092a079.

    CAS  Google Scholar 

  29. S. Fernadanez-Lopez, H. S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen, and M. R. Ghadiri. Antibacterial agents based on the cyclic D–L-α-peptide architecture. Nature. 412:452–455 (2001). doi:10.1038/35086601.

    Google Scholar 

  30. M. R. Ghadiri, J. R. Granja, and L. K. Buehler. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature. 369:301–304 (1994). doi:10.1038/369301a0.

    PubMed  CAS  Google Scholar 

  31. K. Tanaka, N. Kitamura, and Y. Chujo. Properties of superparamagnetic iron oxide nanoparticles assembled on nucleic acids. Nucleic Acids Symp. Ser. (Oxf). 52:693–694 (2008). doi:10.1093/nass/nrn350.

    CAS  Google Scholar 

  32. C. Alexiou, W. Arnold, R. J. Klein, F. G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, and A. S. Lubbe. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60:6641–6648 (2000).

    PubMed  CAS  Google Scholar 

  33. T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar. Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials. 29:4012–4021 (2008). doi:10.1016/j.biomaterials.2008.07.004.

    PubMed  CAS  Google Scholar 

  34. M. Babincov, V. Altanerov, C. Altaner, C. Bergemann, and P. Babinec. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Trans. Nanobioscience. 7:15–19 (2008). doi:10.1109/TNB.2008.2000145.

    PubMed  CAS  Google Scholar 

  35. J. L. Arias, F. Linares-Molinero, V. Gallardo, and A. V. Delgado. Study of carbonyl iron/poly(butylcyanoacrylate) (core/shell) particles as anticancer drug delivery systems loading and release properties. Eur. J. Pharm. Sci. 233:252–261 (2008). doi:10.1016/j.ejps.2007.12.005.

    Google Scholar 

  36. S. Chen, X. Z. Zhang, S. X. Cheng, R. X. Zhuo, and Z. W. Gu. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules. 9(10):2578–2585 (2008).

    PubMed  CAS  Google Scholar 

  37. J. F. Hillyer, and R. M. Albrecht. Correlative instrumental neutron activation analysis, light microscopy, transmission electron microscopy, and X-ray microanalysis for qualitative and quantitative detection of colloidal gold spheres in biological specimens. Microsc. Microanal. 4:481–490 (1998). doi:10.1017/S143192769898045X.

    PubMed  CAS  Google Scholar 

  38. J. Petersen, and K. Bendtzen. Immunosuppressive actions of gold salts. Scand. J. Rheumatol. Suppl. 51:28–35 (1983). doi:10.3109/03009748309095340.

    PubMed  CAS  Google Scholar 

  39. A. E. Finkelstein, D. T. Walz, V. Batista, M. Mizraji, F. Roisman, and A. Misher. Auranofin. New oral gold compound for treatment of rheumatoid arthritis. Ann. Rheum. Dis. 35:251–257 (1976). doi:10.1136/ard.35.3.251.

    PubMed  CAS  Google Scholar 

  40. P. L. Mottram. Past, present and future drug treatment for rheumatoid arthritis and systemic lupus erythematosus. Immunol. Cell Biol. 81:350–353 (2003). doi:10.1046/j.1440-1711.2003.01184.x.

    PubMed  CAS  Google Scholar 

  41. C. R. Patra, R. Bhattacharya, E. Wang, A. Katarya, J. S. Lau, S. Dutta, M. Murders, S. Wang, S. A. Buhrow, S. L. Safgren, M. J. Yaszemski, J. M. Reid, M. M. Ames, P. Mukherjee, and D. Mukhopadhyay. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 68:1970–1978 (2008). doi:10.1158/0008-5472.CAN-07-6102.

    PubMed  CAS  Google Scholar 

  42. E. Lin, and J. Nemunaitis. Oncolytic viral therapies. Cancer Gene Ther. 11:643–664 (2004). doi:10.1038/sj.cgt.7700733.

    PubMed  CAS  Google Scholar 

  43. M. A. Jordan, R. J. Toso, D. Thrower, and L. Wilson. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. U.S.A. 90:9552–9556 (1993). doi:10.1073/pnas.90.20.9552.

    PubMed  CAS  Google Scholar 

  44. B. H. Long, and C. R. Fairchild. Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res. 54:4355–4361 (1994).

    PubMed  CAS  Google Scholar 

  45. N. Wong Shi Kam, T. C. Jessop, P. A. Wender, and H. Dai. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126:6850–6851 (2004). doi:10.1021/ja0486059.

    Google Scholar 

  46. H. A. Wood, and P. R. Hughes. Recombinant viral insecticides: Delivery of environmentally safe and cost-effective products. BioControl. 41:361–373 (1996).

    Google Scholar 

  47. T. Y. Zakharian, A. Seryshev, B. Sitharaman, B. E. Gilbert, V. Knight, and L. J. Wilson. A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. 127:12508–12509 (2005). doi:10.1021/ja0546525.

    PubMed  CAS  Google Scholar 

  48. R. Bakry, R. M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C. W. Huck, and G. K. Bonn. Medicinal applications of fullerenes. Int. J. Nanomedicine. 2:639–649 (2007).

    PubMed  CAS  Google Scholar 

  49. N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa. [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 5:2578–2585 (2005). doi:10.1021/nl051866b.

    PubMed  CAS  Google Scholar 

  50. M. Taglietti, C. N. Hawkins, and J. Rao. Novel topical drug delivery systems and their potential use in acne vulgaris. Skin Therapy Lett. 13:6–8 (2008).

    PubMed  CAS  Google Scholar 

  51. T. Mashino, D. Nishikawa, K. Takahashi, N. Usui, T. Yamori, M. Seki, T. Endo, and M. Mochizuki. Antibacterial and antiproliferative activity of cationic fullerene derivatives. Bioorg. Med. Chem. Lett. 13:4395–4397 (2003). doi:10.1016/j.bmcl.2003.09.040.

    PubMed  CAS  Google Scholar 

  52. R. D. Bolskar, A. F. Benedetto, L. O. Husebo, R. E. Price, E. F. Jackson, S. Wallace, L. J. Wilson, and J. M. Alford. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 125:5471–5478 (2003). doi:10.1021/ja0340984.

    PubMed  CAS  Google Scholar 

  53. E. Tóth, R. D. Bolskar, A. Borel, G. González, L. Helm, A. E. Merbach, B. Sitharaman, and L. J. Wilson. Water-soluble gadofullerenes: Toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc. 127:799–805 (2005). doi:10.1021/ja044688h.

    PubMed  Google Scholar 

  54. F. Rancan, M. Helmreich, A. Mölich, N. Jux, A. Hirsch, B. Röder, C. Witt, and F. Böhm. Fullerene-pyropheophorbide a complexes as sensitizer for photodynamic therapy: Uptake and photo-induced cytotoxicity on Jurkat cells. J. Photochem. Photobiol. B. 80:1–7 (2005). doi:10.1016/j.jphotobiol.2005.01.007.

    PubMed  CAS  Google Scholar 

  55. K. Murata, K. Kaneko, W. A. Steele, F. Kokai, K. Takahashi, D. Kasuya, K. Hirahara, M. Yudasaka, and S. Iijima. Molecular potential structures of heat-treated single-wall carbon nanohorn assemblies. J. Phys. Chem. B. 105:10210–10216 (2001). doi:10.1021/jp010754f.

    CAS  Google Scholar 

  56. T. Murakami, K. Ajima, J. Miyawaki, M. Yudasaka, S. Iijima, and K. Shiba. Drug-loaded carbon nanohorns: Adsorption and release of dexamethasone in vitro. Mol. Pharm. 1:399–405 (2004). doi:10.1021/mp049928e.

    PubMed  CAS  Google Scholar 

  57. K. Ajima, M. Yudasaka, T. Murakami, A. Maigne, K. Shiba, and S. Iijima. Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2:475–480 (2005). doi:10.1021/mp0500566.

    PubMed  CAS  Google Scholar 

  58. D. Mirabile Gattia, M. Vittori Antisari, and R. Marazzi. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets. Nanotechnol. 18:255604–255610 (2007). doi:10.1088/0957-4484/18/25/255604.

    Google Scholar 

  59. N. G. Portney, and M. Ozkan. Nano-oncology: drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 384:620–630 (2006). doi:10.1007/s00216-005-0247-7.

    PubMed  CAS  Google Scholar 

  60. C. R Martin, and P. Kohli. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2:29–37 (2003). doi:10.1038/nrd988.

    Google Scholar 

  61. C. W. Pouton, and L. W. Seymour. Key issues in non-viral gene delivery. Adv. Drug. Deliv. Rev. 46:187–203 (2001). doi:10.1016/S0169-409X(00)00133-2.

    PubMed  CAS  Google Scholar 

  62. M. -F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84:5552–5555 (2000). doi:10.1103/PhysRevLett.84.5552.

    PubMed  CAS  Google Scholar 

  63. R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Physical properties of carbon nanotubes. Imperial College, London, 1998.

    Google Scholar 

  64. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60:2204–2206 (1992). doi:10.1063/1.107080.

    CAS  Google Scholar 

  65. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Electronic structure of graphene tubules based on C60. Phys. Rev. B. 46:1804–1811 (1992). doi:10.1103/PhysRevB.46.1804.

    CAS  Google Scholar 

  66. A. B. Kaiser, G. Düsberg, and S. Roth. Heterogeneous model for conduction in carbon. nanotubes. Phys. Rev. B. 57:1418–1421 (1998). doi:10.1103/PhysRevB.57.1418.

    CAS  Google Scholar 

  67. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman. Structure-assigned optical spectra of single-walled carbon nanotubes. Science. 298:2361–2366 (2002). doi:10.1126/science.1078727.

    PubMed  CAS  Google Scholar 

  68. L. Agüí, P. Yáñez-Sedeño, and J. M. Pingarrón. Role of carbon nanotubes in electroanalytical chemistry: a review. Anal. Chim. Acta. 622:11–47 (2008). doi:10.1016/j.aca.2008.05.070.

    PubMed  Google Scholar 

  69. A. Star, J. P. Gabriel, K. Bradley, and G. Gruner. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3:459–463 (2003). doi:10.1021/nl0340172.

    CAS  Google Scholar 

  70. P. Avouris, Z. Chen, and V. Perebeinos. Carbon-based electronics. Nat. Nanotechnol. 2:605–615 (2007). doi:10.1038/nnano.2007.300.

    PubMed  CAS  Google Scholar 

  71. S. Yoshimoto, Y. Murata, K. Kubo, K. Tomita, K. Motoyoshi, T. Kimura, H. Okino, R. Hobara, I. Matsuda, S. Honda, M. Katayama, and S. Hasegawa. Four-point probe resistance measurements using PtIr-coated carbon nanotube tips. Nano Lett. 7:956–959 (2007). doi:10.1021/nl0630182.

    PubMed  CAS  Google Scholar 

  72. R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco, and K. Kostarelos. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. U.S.A. 103:3357–3362 (2006). doi:10.1073/pnas.0509009103.

    PubMed  CAS  Google Scholar 

  73. J. L. Hudson, M. J. Casavant, and J. M. Tour. Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J. Am. Chem. Soc. 126:11158–11159 (2004). doi:10.1021/ja0467061.

    PubMed  CAS  Google Scholar 

  74. H. Hu, Y. Ni, V. Montana, R. C. Haddon, and V. Parpura. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 4:507–511 (2004). doi:10.1021/nl035193d.

    CAS  Google Scholar 

  75. D. Pantarotto, J.-P. Briand, M. Prato, and A. Bianco. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 16–17 (2004). doi:10.1039/b311254c.

  76. D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J. -P. Briand, M. Prato, K. Kostarelos, and A. Bianco. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43:5242–5236 (2004). doi:10.1002/anie.200460437.

    CAS  Google Scholar 

  77. M. H. Cato, F. D’Annibale, D. M. Mills, F. Cerignoli, M. I. Dawson, E. Bergamaschi, N. Bottini, A. Magrini, A. Bergamaschi, N. Rosato, R. C. Rickert, T. Mustelin, and M. Bottini. Cell-type specific and cytoplasmic targeting of PEGylated carbon nanotube-based nanoassemblies. J. Nanosci. Nanotechnol. 8:2259–2269 (2008). doi:10.1166/jnn.2008.501.

    PubMed  CAS  Google Scholar 

  78. C. J. Gannon, P. Cherukuri, B. I. Yakobson, L. Cognet, J. S. Kanzius, C. Kittrell, R.B. Weisman, M. Pasquali, H. K. Schmidt, R. E. Smalley, and S. A. Curley. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer. 110:2654–2665 (2007). doi:10.1002/cncr.23155.

    PubMed  CAS  Google Scholar 

  79. P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126:15638–15639 (2004). doi:10.1021/ja0466311.

    PubMed  CAS  Google Scholar 

  80. H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J.-P. Briand, S. Muller, M. Prato, and A. Bianco. Functionalized carbon nanotubes are non toxic and preserve the functionality of primary immune cells. Nano Lett. 6:1522–1528 (2006). doi:10.1021/nl061160x.

    PubMed  CAS  Google Scholar 

  81. K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J.-P. Briand, S. Muller, M. Prato, and A. Bianco. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2:108–113 (2007). doi:10.1038/nnano.2006.209.

    PubMed  CAS  Google Scholar 

  82. R. J. Chen, Y. Zhang, D. Wang, and H. Dai. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123:3838–3839 (2001). doi:10.1021/ja010172b.

    PubMed  CAS  Google Scholar 

  83. Z. Jin, L. Huang, S.H. Goh, G. Xu, and W. Ji. Characterization and nonlinear optical properties of a poly(acrylic acid)–surfactant–multi-walled carbon nanotube complex. Chem. Phys. Lett. 332:461–466 (2000). doi:10.1016/S0009-2614(00)01294-X.

    CAS  Google Scholar 

  84. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science. 290:1331–1334 (2000). doi:10.1126/science.290.5495.1331.

    PubMed  CAS  Google Scholar 

  85. A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi, and J. R. Heath. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40:1721–1725 (2001). doi:10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F.

    CAS  Google Scholar 

  86. A. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. Huffman, F. Rodriguez-Macias, P. Boul, A. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. Fischer, A. Rao, P. C. Eklund, and R. E. Smalley. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A. 67:29–37 (1998). doi:10.1007/s003390050734.

    CAS  Google Scholar 

  87. G. S. Duesberg, J. Muster, V. Krstic, M. Burghard, and S. Roth. Chromatographic size separation of single-wall carbon nanotubes. Appl. Phys. A. 67:117–119 (1998). doi:10.1007/s003390050747.

    CAS  Google Scholar 

  88. M. Holzinger, A. Hirsh, P. Bernier, G. S. Duesberg, and M. Burghard. A new purification method for single-wall carbon nanotubes (SWNTs). Appl. Phys. A. 70:599–602 (2000). doi:10.1007/s003390051087.

    CAS  Google Scholar 

  89. G. Pagona, and N. Tagmatarchis. Carbon nanotubes: Materials for medicinal chemistry and biotechnological applications. Curr. Med. Chem. 13:1789–1798 (2006). doi:10.2174/092986706777452524.

    PubMed  CAS  Google Scholar 

  90. M. Holzinger, O. Vostrowsky, A. Hirsh, F. Hennrich, M. Kappes, R. Weiss, and F. Jellen. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 40:4002–4005 (2001). doi:10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8.

    CAS  Google Scholar 

  91. M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, and A. Hirsh. Functionalization of single-walled carbon nanotubes with (R-)Oxycarbonyl nitrenes. J. Am. Chem. Soc. 125:8566–8580 (2003). doi:10.1021/ja029931w.

    PubMed  CAS  Google Scholar 

  92. Z. Yinghuai, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane, and M. Takagaki. Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc. 127:9875–9880 (2005). doi:10.1021/ja0517116.

    PubMed  CAS  Google Scholar 

  93. M. Holzinger, J. Steinmetz, D. Samaille, M. Glerup, M. Paillet, P. Bernier, L. Ley, and R. Graupner. [2+1] cycloaddition for cross-linking SWNTs. Carbon. 42:941–947 (2004). doi:10.1016/j.carbon.2003.12.019.

    CAS  Google Scholar 

  94. J. L. Bahr, and J. M. Tour. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13:3823–3824 (2001). doi:10.1021/cm0109903.

    CAS  Google Scholar 

  95. J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, and J. M. Tour. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123:6536–6542 (2001). doi:10.1021/ja010462s.

    PubMed  CAS  Google Scholar 

  96. C. A. Dyke, and J. M. Tour. Solvent-free functionalization of carbon nanotubes. J. Am. Chem. Soc. 125:1156–1157 (2003). doi:10.1021/ja0289806.

    PubMed  CAS  Google Scholar 

  97. J. L. Hudson, M. J. Caavant, and J. M. Tour. Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J. Am. Chem. Soc. 126:11158–11159 (2004). doi:10.1021/ja0467061.

    PubMed  CAS  Google Scholar 

  98. H. Paloniemi, T. Aäritalo, T. Laiho, H. Liuke, N. Kocharova, K. Haapakka, F. Terzi, R. Seeber, and J. Lukkari. Water-soluble full-length single-wall carbon nanotube polyelectrolytes: preparation and characterization. J. Phys. Chem. B. 109:8634–8642 (2005). doi:10.1021/jp0443097.

    PubMed  CAS  Google Scholar 

  99. H. Zhang, H. X. Li, and H. M. Cheng. Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline. J. Phys. Chem. B. 110:9095–9099 (2006). doi:10.1021/jp060193y.

    PubMed  CAS  Google Scholar 

  100. A. Liu, T. Watanabe, I. Honma, J. Wang, and H. Zhou. Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor. Biosens. Bioelectron. 22:694–699 (2006). doi:10.1016/j.bios.2006.02.006.

    PubMed  CAS  Google Scholar 

  101. K. Besteman, J. -O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3:727–730 (2003). doi:10.1021/nl034139u.

    CAS  Google Scholar 

  102. H. Xin, and A. T. Woolley. DNA-templated nanotube localization. J. Am. Chem. Soc. 125:8710–8711 (2003). doi:10.1021/ja035902p.

    PubMed  CAS  Google Scholar 

  103. B. J. Taft, A. D. Lazareck, G. D. Withey, A. Yin, J. M. Xu, and S. O. Kelley. Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. J. Am. Chem. Soc. 126:12750–12751 (2004). doi:10.1021/ja045543d.

    PubMed  CAS  Google Scholar 

  104. L. Liu, T. Wang, J. Li, Z. Guo, L. Dai, D. Zhang, and D. Zhu. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem. Phys. Lett. 367:747–752 (2003). doi:10.1016/S0009-2614(02)01789-X.

    CAS  Google Scholar 

  105. A. B. Dalton, C. Stephan, J. N. Coleman, B. McCarthy, P. M. Ajayan, S. Lefrant, P. Bernier, W. J. Blau, and H. J. Byrne. Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. J. Phys. Chem. B. 104:10012–10016 (2000). doi:10.1021/jp002857o.

    CAS  Google Scholar 

  106. D. W. Steuerman, A. Star, R. Narizzano, H. Choi, R. S. Ries, C. Nicolini, J. F. Stoddart, and J. R. Heath. Interactions between conjugated polymers and single-walled carbon nanotubes. J. Phys. Chem. B. 106:3124–3130 (2002). doi:10.1021/jp014326l.

    CAS  Google Scholar 

  107. A. Star, and J. F. Stoddart. Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromol. 35:7516–7520 (2002). doi:10.1021/ma0204150.

    CAS  Google Scholar 

  108. C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti. Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules. 35:8825–8830 (2002). doi:10.1021/ma020890y.

    CAS  Google Scholar 

  109. J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater. 12:213–216 (2000). doi:10.1002/(SICI)1521-4095(200002)12:3<213::AID-ADMA213>3.0.CO;2-D.

    CAS  Google Scholar 

  110. R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau. High-yield, nondestructive purification and quantification method for multiwalled carbon nanotubes. J. Phys. Chem. B. 106:3087–3091 (2002). doi:10.1021/jp0132836.

    CAS  Google Scholar 

  111. J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau. Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes. J. Chem. Phys. 113:9788–9793 (2000). doi:10.1063/1.1322032.

    CAS  Google Scholar 

  112. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3:269–273 (2003). doi:10.1021/nl025924u.

    CAS  Google Scholar 

  113. C. Richard, F. Balavoine, P. Schultz, T. W. Ebbesen, and C. Mioskowski. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science. 300:775–778 (2003). doi:10.1126/science.1080848.

    PubMed  CAS  Google Scholar 

  114. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R. B. Weisman, and R. E. Smalley. Band gap fluorescence from individual single-walled carbon nanotubes. Science. 297:593–596 (2002). doi:10.1126/science.1072631.

    PubMed  CAS  Google Scholar 

  115. V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, and R. E. Smalley. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3:1379–1382 (2003). doi:10.1021/nl034524j.

    CAS  Google Scholar 

  116. W. Wenseleers, I. I. Vlasov, E. Goovaerts, E. D. Obraztsova, A. S. Lobach, and A. Bouwen. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 14:1105–1112 (2004). doi:10.1002/adfm.200400130.

    CAS  Google Scholar 

  117. M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342:265–271 (2001). doi:10.1016/S0009-2614(01)00490-0.

    CAS  Google Scholar 

  118. I. Singh, P. K. Bhatnagar, P. C. Mathur, and L. M. Bharadwaj. Optical absorption spectrum of single-walled carbon nanotubes dispersed in sodium cholate and sodium dodecyl sulfate. J. Mat. Res. 23:632–636 (2008). doi:10.1557/jmr.2008.0078.

    CAS  Google Scholar 

  119. S. Park, H. S. Yang, D. Kim, K. Jo, and S. Jon. Rational design of amphiphilic polymers to make carbon nanotubes water-dispersible, anti-biofouling, and functionalizable. Chem. Commun. 2876–2878 (2008). doi:10.1039/b802057d.

  120. Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 1:50–56 (2007). doi:10.1021/nn700040t.

    PubMed  Google Scholar 

  121. H. Ali-Boucetta, K. Al-Jamal, D. McCarthy, M. Prato, A. Bianco, and K. Kostarelos. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. 459–461 (2008). doi:10.1039/b712350g.

  122. Y. Ito, N. Venkatesan, N. Hirako, N. Sugioka, and K. Takada. Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. Int. J. Pharm. 337:357–360 (2007). doi:10.1016/j.ijpharm.2006.12.042.

    PubMed  CAS  Google Scholar 

  123. N. W. S. Kam, M. O’Connell, J. A. Wisdom, and H. Dai. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U.S.A. 102:11600–11605 (2005). doi:10.1073/pnas.0502680102.

    PubMed  CAS  Google Scholar 

  124. C. G. Salzmann, S. A. Llewellyn, G. Tobias, M. A. H. Ward, Y. Huh, and M. L. H. Green. The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Adv. Mater. 19:883–887 (2007). doi:10.1002/adma.200601310.

    CAS  Google Scholar 

  125. Y. -P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu, and D. L. Carroll. Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties. Chem. Mater. 13:2864–2869 (2001). doi:10.1021/cm010069l.

    CAS  Google Scholar 

  126. K. Fu, W. Huang, Y. Lin, L. A. Riddle, D. L. Carroll, and Y. -P. Sun. Defunctionalization of functionalized carbon nanotubes. Nano Lett. 1:439–441 (2001). doi:10.1021/nl010040g.

    CAS  Google Scholar 

  127. M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, and R. C. Haddon. Dissolution of single-walled carbon nanotubes. Adv. Mater. 11:834–840 (1999). doi:10.1002/(SICI)1521-4095(199907)11:10<834::AID-ADMA834>3.0.CO;2-R.

    CAS  Google Scholar 

  128. A. Kukovecz, C. Kramberger, M. Holzinger, H. Kuzmany, J. Schalko, M. Mannsberger, and A. Hirsch. On the stacking behavior of functionalized single-wall carbon nanotubes. J. Phys. Chem. B. 106:6374–6380 (2002). doi:10.1021/jp014019f.

    CAS  Google Scholar 

  129. J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, and R. C. Haddon. Dissolution of full-length single-walled carbon nanotubes. J. Phys. Chem. B. 105:2525–2528 (2001). doi:10.1021/jp002596i.

    CAS  Google Scholar 

  130. Y. P. Sun, K. Fu, Y. Lin, and W. Huang. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 35:1096–1104 (2002). doi:10.1021/ar010160v.

    PubMed  CAS  Google Scholar 

  131. W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T. W. Hanks, A. M. Rao, and Y.-P. Sun. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2:311–314 (2002). doi:10.1021/nl010095i.

    CAS  Google Scholar 

  132. S. E. Baker, W. Cai, T. L. Lasseter, K. P. Weidkamp, and R. J. Hamers. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett. 2:1413–1417 (2002). doi:10.1021/nl025729f.

    CAS  Google Scholar 

  133. M. Hazani, R. Naaman, F. Hennrich, and M. M. Kappes. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett. 3:153–155 (2003). doi:10.1021/nl025874t.

    CAS  Google Scholar 

  134. Z. Chen, K. Kobashi, U. Rauwald, R. Booker, H. Fan, W. F. Hwang, and J. M. Tour. Soluble ultra-short single-walled carbon nanotubes. J. Am. Chem. Soc. 128:10568–10571 (2006). doi:10.1021/ja063283p.

    PubMed  CAS  Google Scholar 

  135. G. Pastorin, W. Wu, S. Wieckowski, J. -P. Briand, K. Kostarelos, M. Prato, and A. Bianco. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 1182–1184 (2006). doi:10.1039/b516309a.

  136. R. Pignatello, S. Guccione, S. Forte, C. Di Giacomo, V. Sorrenti, L. Vicari, G. Uccello Barretta, F. Balzano, and G. Puglisi. Lipophilic conjugates of methotrexate with short-chain alkylamino acids as DHFR inhibitors. Synthesis, biological evaluation, and molecular modeling. Bioorg. Med. Chem. 12:2951–2964 (2004). doi:10.1016/j.bmc.2004.03.040.

    PubMed  CAS  Google Scholar 

  137. W. Wu, S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J.-P. Briand, R. Gennaro, M. Prato, and A. Bianco. Targeted delivery of amphotericin B to cells using functionalised carbon nanotubes. Angew. Chem. Int. Ed. 44:6358–6362 (2005). doi:10.1002/anie.200501613.

    CAS  Google Scholar 

  138. S. B. Zotchev. Polyene macrolide antibiotics and their applications in human therapy. Curr. Med. Chem. 10:211–223 (2003).

    PubMed  CAS  Google Scholar 

  139. J. Szlinder-Richert, B. Cybulska, J. Grzybowska, J. Bolard, and E. Borowski. Interaction of amphotericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method. Farmaco. 59:289–296 (2004). doi:10.1016/j.farmac.2003.12.007.

    PubMed  CAS  Google Scholar 

  140. D. Pantarotto, C.D. Partidos, J. Hoebeke, F. Brown, E. Kramer, J.-P. Briand, S. Muller, M. Prato, and A. Bianco. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10:961–966 (2003). doi:10.1016/j.chembiol.2003.09.011.

    PubMed  CAS  Google Scholar 

  141. D. Cai, J. M. Mataraza, Z. -H. Qin, Z. Huang, J. Huang, T. C. Chiles, D. Carnahan, K. Kempa, and Z. Ren. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods. 2:449–454 (2005). doi:10.1038/nmeth761.

    PubMed  CAS  Google Scholar 

  142. Q. Lu, J. M. Moore, G. Huang, A. S. Mount, A. M. Rao, L. L. Larcom, and P. C. Ke. RNA Polymer translocation with single-walled carbon nanotubes. Nano Lett. 4:2473–2477 (2004). doi:10.1021/nl048326j.

    CAS  Google Scholar 

  143. N. Wong Shi Kam, and H. Dai. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 127:6021–6026 (2005). doi:10.1021/ja050062v.

    Google Scholar 

  144. N. Wong Shi Kam, Z. Liu, and H. Dai. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45:577–581 (2006). doi:10.1002/anie.200503389.

    Google Scholar 

  145. Y. Liu, D.-C. Wu, W.-D. Zhang, X. Jiang, C.-B. He, T. S. Chung, S. H. Goh, and K. W. Leong. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. It. Ed. 44:4782–4785 (2005).

    CAS  Google Scholar 

  146. T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi, and K. Ohno. Enhanced electron-capture decay rate of 7Be encapsulated in C60 cages. Phys. Rev. Lett. 93:112501 (2004). doi:10.1103/PhysRevLett.93.112501.

    PubMed  CAS  Google Scholar 

  147. S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, and S. Iijima. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337:48–54 (2001). doi:10.1016/S0009-2614(01)00192-0.

    CAS  Google Scholar 

  148. K. Yanagi, Y. Miyata, and H. Kataura. Highly stabilized-carotene in carbon nanotubes. Adv. Mater. 18:437–441 (2006). doi:10.1002/adma.200501839.

    CAS  Google Scholar 

  149. H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, K. Suenaga, S. Iijima, S. Suzuki, Y. Achiba, and W. Krätschmer. High-yield fullerene encapsulation in single-wall carbon nanotubes. Synth. Met. 121:1195–1196 (2001). doi:10.1016/S0379-6779(00)00707-4.

    CAS  Google Scholar 

  150. L. J. Li, N. Khlobystov, J. G. Wiltshire, G. A. D. Briggs, and R. J. Nicholas. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat. Mater. 4:481–485 (2005). doi:10.1038/nmat1396.

    PubMed  CAS  Google Scholar 

  151. B. W. Smith, M. Mothioux, and D. E. Luzzi. Encapsulated C60 in carbon nanotubes. Nature. 396:323–324 (1998). doi:10.1038/24521.

    CAS  Google Scholar 

  152. T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, and Y. Iwasa. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2:683–688 (2003). doi:10.1038/nmat976.

    PubMed  CAS  Google Scholar 

  153. F. Simon, H. Kuzmany, H. Rauf, T. Pichler, J. Bernardi, H. Peterlik, L. Korecz, F. Fülöp, and A. Jánossy. Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem. Phys. Lett. 383:362–367 (2004). doi:10.1016/j.cplett.2003.11.039.

    CAS  Google Scholar 

  154. L. Shao, T. -W. Lin, G. Tobias, and M. L. H. Green. A simple method for the containment and purification of filled open-ended single wall carbon nanotubes using C60 molecules. Chem. Commun. 2164–2166 (2008). doi:10.1039/b800881g.

  155. N. I. Krinsky, and K. J. Yeum. Carotenoid-radical interactions. Biochem. Biophys. Res. Commun. 305:754–760 (2003). doi:10.1016/S0006-291X(03)00816-7.

    PubMed  CAS  Google Scholar 

  156. B. H. Chen, and J. H. Huang. Degradation and isomerization of chlorophyll a and β-carotene as affected by various heating and illumination treatments. Food Chem. 62:299–307 (1998). doi:10.1016/S0308-8146(97)00201-X.

    CAS  Google Scholar 

  157. G. Ning, N. Kishi, H. Okimoto, M. Shiraishi, Y. Kato, R. Kitaura, T. Sugai, S. Aoyagi, E. Nishibori, M. Sakata, and H. Shinohara. Synthesis, enhanced stability and structural imaging of C60 and C70 double-wall carbon nanotube peapods. Chem. Phys. Lett. 441:94–99 (2007). doi:10.1016/j.cplett.2007.04.073.

    CAS  Google Scholar 

  158. H. Kawamoto, T. Uchida, K. Kojima, and M. Tachibana. Raman study of DNA-wrapped single-wall carbon nanotube hybrids under various humidity conditions. Chem. Phys. Lett. 431:118–120 (2006). doi:10.1016/j.cplett.2006.09.048.

    CAS  Google Scholar 

  159. V. A. Karachevtsev, A. Y. Glamazda, U. Dettlaff-Weglikowska, V. S. Leontiev, P. V. Mateichenko, S. Roth, and A. M. Rao. Spectroscopic and SEM studies of SWNTs: Polymer solutions and films. Carbon. 44:1292–1297 (2006). doi:10.1016/j.carbon.2005.08.008.

    CAS  Google Scholar 

  160. Y. Ren, and G. Pastorin. Incorporation of hexamethylmelamine inside capped carbon nanotubes. Adv. Mater. 20:2031–2036 (2008). doi:10.1002/adma.200702292.

    CAS  Google Scholar 

  161. M. Yudasaka, K. Aijima, K. Suenaga, T. Ichihashi, A. Hashimoto, and S. Iijima. Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases. Chem. Phys. Lett. 380:42–46 (2003). doi:10.1016/j.cplett.2003.08.095.

    CAS  Google Scholar 

  162. A. Mrzel, A. Hassanien, Z. Liu, K. Suenaga, Y. Miyata, K. Yanagi, and H. Kataura. Effective, fast, and low temperature encapsulation of fullerene derivatives in single wall carbon nanotubes. Surf. Sci. 601:5116–5120 (2007). doi:10.1016/j.susc.2007.04.236.

    CAS  Google Scholar 

  163. K. Yanagi, K. Iakoubovskii, H. Matsui, H. Matsuzaki, H. Okamoto, Y. Miyata, Y. Maniwa, S. Kazaoui, N. Minami, and H. Kataura. Photosensitive function of encapsulated dye in carbon nanotubes. J. Am. Chem. Soc. 129:4992–4997 (2007). doi:10.1021/ja067351j.

    PubMed  CAS  Google Scholar 

  164. S. Hampel, D. Kunze, D. Haase, K. Krämer, M. Rauschenbach, M. Ritschel, A. Leonhardt, J. Thomas, S. Oswald, V. Hoffman, and B. Büchner. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomed. 3:175–182 (2008). doi:10.2217/17435889.3.2.175.

    PubMed  CAS  Google Scholar 

  165. T. E. Ebbesen. Wetting, filling and decorating carbon nanotubes. J. Phys. Chem. Solids. 57:951–955 (1996). doi:10.1016/0022-3697(95)00381-9.

    CAS  Google Scholar 

  166. A. Bianco, K. Kostarelos, and M. Prato. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin. Drug Deliv. 5:331–342 (2008). doi:10.1517/17425247.5.3.331.

    PubMed  CAS  Google Scholar 

  167. P. M. Ajayan. Nanotubes from carbon. Chem. Rev. 99:1787–1800 (1999). doi:10.1021/cr970102g.

    PubMed  CAS  Google Scholar 

  168. M. Jacoby. Nanoscale electronics. Chem. Eng. News. 80:38–43 (2002).

    Google Scholar 

  169. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124:11864–11865 (2002). doi:10.1021/ja027247b.

    PubMed  CAS  Google Scholar 

  170. S.B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, and C. R. Martin. Antibody-based bio/nanotube membranes for enantiomeric drug separation. Science. 296:2198–2200 (2002). doi:10.1126/science.1071396.

    PubMed  CAS  Google Scholar 

  171. Z. Zhang, X. Yang, Y. Zhang, B. Zeng, S. Wang, T. Zhu, R. B. S. Roden, Y. Chen, and R. Yang. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumour growth. Clin. Cancer Res. 12:4933–4939 (2006). doi:10.1158/1078-0432.CCR-05-2831.

    PubMed  CAS  Google Scholar 

  172. R. P. Feazell, N. Nakayama-Ratchford, H. Dai, and S. J. Lippard. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129:8438–8439 (2007). doi:10.1021/ja073231f.

    PubMed  CAS  Google Scholar 

  173. B. Z. Yu, J. S. Yang, and W. X. Li. In vitro capability of multi-walled carbon nanotube modified with gonadotrophin releasing hormone on killing cancer cells. Carbon. 45:1921–1927 (2007). doi:10.1016/j.carbon.2007.06.015.

    CAS  Google Scholar 

  174. B. Panchapakesan, S. Lu, K. Sivakumar, K. Taker, G. Cesarone, and E. Wickstrom. Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. NanoBioTechnology. 1:133–139 (2005). doi:10.1385/NBT:1:2:133.

    CAS  Google Scholar 

  175. N. Shao, S. Lu, E. Wickstrom, and B. Panchapakesan. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnol. 18:315101 (2007)(9 pages).

    Google Scholar 

  176. R. Weiss. Of mice, men and in-between: scientists debate blending of human, animal forms. Washington Post, February 2004, A01.

  177. K. Donaldson, R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest, and A. Alexander. Carbon nanotubes: A review of their properties in relation to pulmonary toxicological and workplace safety. Toxicol. Sci. 92:5–22 (2006). doi:10.1093/toxsci/kfj130.

    PubMed  CAS  Google Scholar 

  178. G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, and X. Guo. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39:1378–1383 (2005). doi:10.1021/es048729l.

    PubMed  CAS  Google Scholar 

  179. K. Donaldson, V. Stone, C. L. Tran, W. Kreyling, and P. J. A. Borm. Nanotoxicology. Occup. Environ. Med. 61:727–728 (2004). doi:10.1136/oem.2004.013243.

    PubMed  CAS  Google Scholar 

  180. C. L. Tran, D. Buchanan, R. T. Cullen, A. Searl, A. D. Jones, and K. Donaldson. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal. Toxicol. 12:1113–1126 (2000). doi:10.1080/08958370050166796.

    PubMed  CAS  Google Scholar 

  181. C. M. Sayes, F. Liang, J. L. Hudson, J. Mendez, W. Guo, J. M. Beach, V. C. Moore, C. D. Doyle, J. L. West, W. E. Billups, K. D. Ausman, and V. L. Colvin. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161:135–142 (2006). doi:10.1016/j.toxlet.2005.08.011.

    PubMed  CAS  Google Scholar 

  182. C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. H. Wallace, A. Seaton, V. Stone, S. Brown, W. Mnee, and K. Donaldson. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3:423–428 (2008). doi:10.1038/nnano.2008.111.

    PubMed  CAS  Google Scholar 

  183. L. Lacerda, H. Ali-Bouchetta, M. A. Herrero, G. Pastorin, A. Bianco, M. Prato, and K. Kostarelos. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomed. 3:149–161 (2008). doi:10.2217/17435889.3.2.149.

    PubMed  CAS  Google Scholar 

  184. Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, and K. Tohji. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. BioSyst. 1:176–182 (2005). doi:10.1039/b502429c.

    PubMed  CAS  Google Scholar 

  185. M. L. Schipper, N. Nakayama-Ratchford, C. R. Davis, N. Wong Shi Kam, P. Chu, Z. Liu, X. Sun, H. Dai, and S. S. Gambhir. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 3:216–221 (2008). doi:10.1038/nnano.2008.68.

    PubMed  CAS  Google Scholar 

  186. H. F. Wang, J. Wang, X. Y. Deng, H. F. Sun, Z. J. Shi, Z. N. Gu, Y. F. Liu, and Y. L. Zhao. Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4:1019–1024 (2004). doi:10.1166/jnn.2004.146.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Pastorin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastorin, G. Crucial Functionalizations of Carbon Nanotubes for Improved Drug Delivery: A Valuable Option?. Pharm Res 26, 746–769 (2009). https://doi.org/10.1007/s11095-008-9811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9811-0

KEY WORDS

Navigation