Skip to main content

Advertisement

Log in

Novel Platforms for Oral Drug Delivery

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The aim of this review is to provide the reader general and inspiring prospects on recent and promising fields of innovation in oral drug delivery. Nowadays, inventive drug delivery systems vary from geometrically modified and modular matrices, more close to “classic” pharmaceutical manufacturing processes, to futuristic bio micro-electro-mechanical systems (bioMEMS), based on manufacturing techniques borrowed from electronics and other fields. In these technologies new materials and creative solutions are essential designing intelligent drug delivery systems able to release the required drug at the proper body location with the correct release rate. In particular, oral drug delivery systems of the future are expected to have a significant impact on the treatment of diseases, such as AIDS, cancer, malaria, diabetes requiring complex and multi-drug therapies, as well as on the life of patients, whose age and/or health status make necessary a multiple pharmacological approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Morishita, and N. A. Peppas. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 11:905–910 (2006). doi:10.1016/j.drudis.2006.08.005.

    Article  PubMed  CAS  Google Scholar 

  2. H. Takeuchi, H. Yamamoto, and Y. Kawashima. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv Drug Deliv Rev. 47:39–54 (2001). doi:10.1016/S0169-409X(00)00120-4.

    Article  PubMed  CAS  Google Scholar 

  3. N. A. Peppas. Devices based on intelligent biopolymers for oral protein delivery. Int J Pharm. 277:11–7 (2004). doi:10.1016/j.ijpharm.2003.03.001.

    Article  PubMed  CAS  Google Scholar 

  4. C. Damge, C. P. Reis, and P. Maincent. Nanoparticle strategies for the oral delivery of insulin. Expert Opin Drug Deliv. 5:45–68 (2008). doi:10.1517/17425247.5.1.45.

    Article  PubMed  CAS  Google Scholar 

  5. H. Gelband, and A. Seiter. A global subsidy for antimalarial drugs. Am J Trop Med Hyg. 77:219–21 (2007).

    PubMed  Google Scholar 

  6. R. Lewanczuk, and S. W. Tobe. More medications, fewer pills: combination medications for the treatment of hypertension. Can J Cardiol. 23:573–6 (2007).

    PubMed  Google Scholar 

  7. P. Colombo, P. Santi, J. Siepmann, G. Colombo, F. Sonvico, A. Rossi, and O. L. Strusi. Swellable and Rigid Matrices: Controlled Release Matrices with Cellulose Ethers. In L. L. Augsburger, and S. W. Hoag (eds.), Pharmaceutical Dosage Forms: Tablets, Vol. 2, Informa Healthcare USA, Inc., New York, 2008, pp. 433–468.

    Google Scholar 

  8. T. D. Reynolds, S. A. Mitchell, and K. M. Balwinski. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets. Drug Dev Ind Pharm. 28:457–466 (2002). doi:10.1081/DDC-120003007.

    Article  PubMed  CAS  Google Scholar 

  9. P. Colombo, U. Conte, A. Gazzaniga, and A. La Manna. Drug release modulation by physical restrictions of matrix swelling. Int J Pharm. 63:43–48 (1990). doi:10.1016/0378-5173(90)90099-P.

    Article  CAS  Google Scholar 

  10. R. Bettini, D. Acerbi, G. Caponetti, R. Musa, N. Magi, P. Colombo, D. Cocconi, P. Santi, P. L. Catellani, and P. Ventura. Influence of layer position on release kinetics of levodopa methyl ester and carbidopa from three-layer matrix tablets. Eur J Pharm Biopharm. 53:227–232 (2002). doi:10.1016/S0939-6411(01)00238-7.

    Article  PubMed  CAS  Google Scholar 

  11. P. Colombo, R. Bettini, P. Santi, and N. A. Peppas. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technol Today. 3:198–204 (2000). doi:10.1016/S1461-5347(00)00269-8.

    Article  PubMed  CAS  Google Scholar 

  12. P. Colombo, R. Bettini, P. Santi, and P. L. Catellani. Modular systems for the controlled release of a substance with space and time control. W. I. P. Organization. WO03043601 (2003).

  13. P. Colombo, P. Santi, R. Bettini, O. L. Strusi, F. Sonvico, and G. Colombo. New modules, new assemblage kits and new assemblies for the controlled release of substances. E. P. Office. PCT/EP2006/011661 (2006).

  14. E. Losi, R. Bettini, P. Santi, F. Sonvico, G. Colombo, K. Lofthus, P. Colombo, and N. A. Peppas. Assemblage of novel release modules for the development of adaptable drug delivery systems. J Control Release. 111:212–8 (2006). doi:10.1016/j.jconrel.2005.12.006.

    Article  PubMed  CAS  Google Scholar 

  15. O. L. Strusi, F. Sonvico, R. Bettini, P. Santi, G. Colombo, P. Barata, A. Oliveira, D. Santos, and P. Colombo. Module assemblage technology for floating systems: in vitro flotation and in vivo gastro-retention. J Control Release. 129:88–92 (2008). doi:10.1016/j.jconrel.2008.04.015.

    Article  PubMed  CAS  Google Scholar 

  16. D. A. LaVan, T. McGuire, and R. Langer. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 21:1184–91 (2003). doi:10.1038/nbt876.

    Article  PubMed  CAS  Google Scholar 

  17. A. C. Richards Grayson, R. Scheidt Shawgo, Y. Li, and M. J. Cima. Electronic MEMS for triggered delivery. Adv Drug Deliv Rev. 56:173–84 (2004). doi:10.1016/j.addr.2003.07.012.

    Article  PubMed  CAS  Google Scholar 

  18. M. Staples, K. Daniel, M. J. Cima, and R. Langer. Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res. 23:847–63 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. N. A. Peppas. Devices based on intelligent biopolymers for oral protein delivery. Int J Pharm. 277:11–17 (2004). doi:10.1016/j.ijpharm.2003.03.001.

    Article  PubMed  CAS  Google Scholar 

  20. S. Amer, and W. Badawy. An integrated platform for bio-analysis and drug delivery. Curr Pharm Biotechnol. 6:57–64 (2005).

    PubMed  CAS  Google Scholar 

  21. J. Z. Hilt, and N. A. Peppas. Microfabricated drug delivery devices. Int J Pharm. 306:15–23 (2005). doi:10.1016/j.ijpharm.2005.09.022.

    Article  PubMed  CAS  Google Scholar 

  22. R. J. Jackman, D. C. Duffy, E. Ostuni, N. D. Willmore, and J. M. Whitesides. Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting. Anal Chem. 70:2280–2287 (1998). doi:10.1021/ac971295a.

    Article  CAS  Google Scholar 

  23. J. T. Santini Jr., M. J. Cima, and R. Langer. A controlled-release microchip. Nature. 397:335–338 (1999). doi::10.1038/16898.

    Article  PubMed  CAS  Google Scholar 

  24. S. L. Tao, and T. A. Desai. Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev. 55:315–28 (2003). doi:10.1016/S0169-409X(02)00227-2.

    Article  PubMed  CAS  Google Scholar 

  25. J. Vandervoort, and A. Ludwig. Microneedles for transdermal drug delivery: a minireview. Front Biosci. 13:1711–5 (2008). doi:10.2741/2794.

    Article  PubMed  CAS  Google Scholar 

  26. S. L. Tao, and T. A. Desai. Gastrointestinal patch systems for oral drug delivery. Drug Discov Today. 10:909–15 (2005). doi:10.1016/S1359-6446(05)03489-6.

    Article  PubMed  CAS  Google Scholar 

  27. Z. Shen, and S. Mitragotri. Intestinal patches for oral drug delivery. Pharm Res. 19:391–395 (2002). doi:10.1023/A:1015118923204.

    Article  PubMed  CAS  Google Scholar 

  28. A. Ahmed, C. Bonner, and T. A. Desai. Bioadhesive microdevices for drug delivery: a feasibility study. Biomed Microdevices. 3:89–96 (2001). doi:10.1023/A:1011489907820.

    Article  CAS  Google Scholar 

  29. A. Ahmed, C. Bonner, and T. A. Desai. Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. J Control Release. 81:291–306 (2002). doi:10.1016/S0168-3659(02)00074-3.

    Article  PubMed  CAS  Google Scholar 

  30. A. B. Foraker, R. J. Walczak, M. H. Cohen, T. A. Boiarski, C. F. Grove, and P. W. Swaan. Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm Res. 20:110–6 (2003). doi:10.1023/A:1022211127890.

    Article  PubMed  CAS  Google Scholar 

  31. K. M. Wood, G. M. Stone, and N. A. Peppas. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. Biomacromolecules. 9:1293–1298 (2008). doi:10.1021/bm701274p.

    Article  PubMed  CAS  Google Scholar 

  32. A. Moglia, A. Menciassi, M. O. Schurr, and P. Dario. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomed Microdevices. 9:235–43 (2007). doi:10.1007/s10544-006-9025-3.

    Article  PubMed  Google Scholar 

  33. N. A. Peppas, K. M. Wood, and J. O. Blanchette. Hydrogels for oral delivery of therapeutic proteins. Expert Opinion on Biological Therapy. 4:881–887 (2004). doi:10.1517/14712598.4.6.881.

    Article  PubMed  CAS  Google Scholar 

  34. L. Bromberg. Intelligent hydrogels for the oral delivery of chemotherapeutics. Expert Opin Drug Deliv. 2:1003–1013 (2005). doi:10.1517/17425247.2.6.1003.

    Article  PubMed  CAS  Google Scholar 

  35. M. Shainpoor, and H.-J. Schneider. Intelligent Materials. Royal Society of Chemistry, Cambridge, 2008.

    Google Scholar 

  36. N. A. Peppas, J. Z. Hilt, and J. B. Thomas. Nanothecnology in Therapeutics: Current Technology and Applications. Horizon Scientific Press, Norwich, UK, 2007.

    Google Scholar 

  37. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 50:27–46 (2000). doi:10.1016/S0939-6411(00)00090-4.

    Article  PubMed  CAS  Google Scholar 

  38. A. Richter, G. Paschew, S. Klatt, J. Lienig, K.-F. Arndt, and H.-J. P. Adler. Review on Hydrogel-based pH Sensors and Microsensors. Sensors. 8:561–581 (2008). doi:10.3390/s8116999.

    Article  CAS  Google Scholar 

  39. H. A. Allock, and A. M. A. Ambrosio. Synthesis and characterization of pH-sensitive poly(organophosphazene) hydrogels. Biomaterials. 17:2295–2302 (1996). doi:10.1016/0142-9612(96)00073-7.

    Article  Google Scholar 

  40. A. Bernkop-Schnurch. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 57:1569–1582 (2005). doi:10.1016/j.addr.2005.07.002.

    Article  PubMed  Google Scholar 

  41. P. J. Flory, and J. Rehner. Statistical mechanisms of cross-linked polymer networks I. Rubber elasticity. J Chem Phys. 11:512–520 (1943). doi:10.1063/1.1723791.

    Article  CAS  Google Scholar 

  42. P. J. Flory, and J. Rehner. Statistical mechanisms of cross-linked polymer networks II. Swelling. J Chem Phys. 11:521–526 (1943). doi:10.1063/1.1723792.

    Article  CAS  Google Scholar 

  43. N. A. Peppas, and E. W. Merril. Crosslinked poly(vynyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci. 21:1763–1770 (1977). doi:10.1002/app.1977.070210704.

    Article  CAS  Google Scholar 

  44. L. Brannon-Peppas, and N. A. Peppas. Equilibrium swelling behavior of pH-sensitive hydrogels. Chem Eng Sci. 46:715–722 (1991). doi:10.1016/0009-2509(91)80177-Z.

    Article  CAS  Google Scholar 

  45. S. Hirotsu, Y. Hirokawa, and T. Tanaka. Volume-phase transitions of ionized N-isopropyl acrylamide. J Chem Phys. 87:1392–1395 (1987). doi:10.1063/1.453267.

    Article  CAS  Google Scholar 

  46. S. K. Vakkalanka, C. S. Brazel, and N. A. Peppas. Temperature and pH-sensitive terpolymersfor modulated delivery of streptokinase. J Biomed Mater Sci-Polym Ed. 8:119–129 (1996).

    Article  CAS  Google Scholar 

  47. C. L. Bell, and N. A. Peppas. Water, solute and protein diffusion in physiologically responsive hydrogels of poly(methacrylic acid-g-ethylene glycol). Biomaterials. 17:1203–1218 (1996). doi:10.1016/0142-9612(96)84941-6.

    Article  PubMed  CAS  Google Scholar 

  48. A. M. Lowman, and N. A. Peppas. Complexation graft copolymers as a drug delivery systems. Polym Prep. 38:566–567 (1997).

    CAS  Google Scholar 

  49. A. M. Lowman, M. Morishita, M. Kajita, T. Nagai, and N. A. Peppas. Oral delivery of insulin using ph-responsive complexation gels. J Pharm Sci. 88:933–937 (1999). doi:10.1021/js980337n.

    Article  PubMed  CAS  Google Scholar 

  50. K. Nakamura, M. Morishita, J. Ehara, Y. Onuki, T. Yamagata, N. Kamei, A. M. Lowman, N. A. Peppas, and K. Takayma. Key functions in polymer carriers for intestinal absorption of insulin. Int J Pharm. 354:135–42 (2008).

    PubMed  CAS  Google Scholar 

  51. M. Morishita, T. Goto, K. Nakamura, A. M. Lowman, K. Takayama, and N. A. Peppas. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats. J Control Release. 110:587–94 (2006). doi:10.1016/j.jconrel.2005.10.029.

    Article  PubMed  CAS  Google Scholar 

  52. M. Morishita, T. Goto, N. A. Peppas, J. I. Joseph, M. C. Torjman, C. Munsick, K. Nakamura, T. Yamagata, K. Takayama, and A. M. Lowman. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption. J Control Release. 97:115–24 (2004). doi:10.1016/j.jconrel.2004.03.008.

    Article  PubMed  CAS  Google Scholar 

  53. K. Nakamura, R. J. Murray, J. I. Joseph, N. A. Peppas, M. Morishita, and A. M. Lowman. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Control Release. 95:589–99 (2004). doi:10.1016/j.jconrel.2003.12.022.

    Article  PubMed  CAS  Google Scholar 

  54. M. Morishita, A. M. Lowman, K. Takayama, T. Nagai, and N. A. Peppas. Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers. J Control Release. 81:25–32 (2002). doi:10.1016/S0168-3659(02)00019-6.

    Article  PubMed  CAS  Google Scholar 

  55. A. De Ascentiis, J. L. de Grazia, C. N. Bowman, P. Colombo, and N. A. Peppas. Mucoadhesion of Poly(2-hydroxyethyl methacrylate) is Improved when Linear Poly(ethylene oxide) Chains are Added to the Polymer Network. J Control Release. 33:197–201 (1995). doi:10.1016/0168-3659(94)00087-B.

    Article  CAS  Google Scholar 

  56. L. Serra, J. Doménech, and N. A. Peppas. Design of poly(ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems. Eur J Pharm Biopharm. 63:11–18 (2006). doi:10.1016/j.ejpb.2005.10.011.

    Article  PubMed  CAS  Google Scholar 

  57. R. Bettini, P. Colombo, and N. A. Peppas. Solubility effect on drug transport through pH-sensitive, swelling-controlled release systems: Transport of theophylline and metoclopramide monohydrocloride. J Control Release. 37:105–111 (1995). doi:10.1016/0168-3659(95)00069-K.

    Article  CAS  Google Scholar 

  58. A. F. Jimenez-Kairuz, D. A. Allemandi, and R. H. Manzo. Equilibrium properties and mechanism of kinetic release of metoclopramide from carbomer hydrogels. Int J Pharm. 250:129–136 (2003). doi:10.1016/S0378-5173(02)00525-2.

    Article  PubMed  CAS  Google Scholar 

  59. J. M. Bermudez, A. F. Jimenez-Kairuz, M. E. Olivera, D. A. Allemandi, and R. H. Manzo. A ciprofloxacin extended release tablet based on swellable drug polyelectrolyte matrices. AAPS PharmSciTech. 9:924–30 (2008).

    Article  PubMed  Google Scholar 

  60. A. F. Jimenez-Kairuz, J. M. Llabot, D. A. Allemandi, and R. H. Manzo. Swellable drug-polyelectrolyte matrices (SDPM). Characterization and delivery properties. Int J Pharm. 288:87–99 (2005). doi:10.1016/j.ijpharm.2004.09.014.

    Article  PubMed  CAS  Google Scholar 

  61. M. C. Bonferoni, G. Sandri, S. Rossi, F. Ferrari, C. Caramella, C. Aguzzi, and C. Viseras. Polyelectrolyte–drug complexes of lambda carrageenan and basic drugs: relevance of particle size and moisture content on compaction and drug release behavior. Drug Dev Ind Pharm. 1–8 (2008).

  62. M. C. Bonferoni, S. Rossi, F. Ferrari, and C. Caramella. Development of oral controlled-release tablet formulations based on diltiazem-carrageenan complex. Pharm Dev Technol. 9:155–62 (2004). doi:10.1081/PDT-120027428.

    Article  PubMed  CAS  Google Scholar 

  63. C. Aguzzi, M. C. Bonferoni, M. R. Fortich, S. Rossi, F. Ferrari, and C. Caramella. Influence of complex solubility on formulations based on lambda carrageenan and basic drugs. AAPS PharmSciTech. 3:E27 (2002). doi:10.1208/pt030327.

    Article  PubMed  Google Scholar 

  64. M. C. Bonferoni, S. Rossi, F. Ferrari, G. P. Bettinetti, and C. Caramella. Characterization of a diltiazem-lambda carrageenan complex. Int J Pharm. 200:207–16 (2000). doi:10.1016/S0378-5173(00)00389-6.

    Article  PubMed  CAS  Google Scholar 

  65. M. V. Ramiréz Rigo, D. A. Allemandi, and R. H. Manzo. Swellable drug-polyelectrolyte matrices (SDPM) of alginic acid Characterisation and delivery properties. Int J Pharm. 322:36–43 (2006). doi:10.1016/j.ijpharm.2006.05.025.

    Article  Google Scholar 

  66. D. A. Quiteros, M. V. Ramiréz Rigo, A. F. Jimenez-Kairuz, M. E. Olivera, R. H. Manzo, and D. A. Allemandi. Interaction between a cationic polymetacrylate (Eudragit E100), and ionic drugs. Eur J Pharm Sci. 33:72–79 (2008).

    Google Scholar 

  67. R. Bettini, L. Zanellotti, P. Colombo, M. C. Bonferoni, and C. Caramella. Drug release kinetics and mechanism from drug-lambda carrageenan complexes, 2003 AAPS Annual Meeting, AAPS, Salt Lake City, 2003, pp. W5095.

  68. C. L. Li, L. G. Martini, J. L. Ford, and M. Roberts. The use of hypromellose in oral drug delivery. J Pharm Pharmacol. 57:533–546 (2005). doi:10.1211/0022357055957.

    Article  PubMed  CAS  Google Scholar 

  69. P. Colombo, R. Bettini, and P. Santi. Hydrophilic polymers for matrix systems. In G. G. Barrat, D. Duchene, E. Fattal, and J. Y. Legendre (eds), New trends in polymers for oral and parenteral administration from design to receptors, Edition de Santé, Paris, Paris, 2001, pp. 99–106.

  70. P. Colombo, A. Gazzaniga, U. Conte, M. E. Sangalli, and A. La Manna. Solvent front movement and release kinetics in compressed swellable matrices. Int. Symp. Control. Release Society. 14:83–84 (1987).

    Google Scholar 

  71. U. Conte, P. Colombo, A. Gazzaniga, M. E. Sangalli, and A. La Manna. Swelling activated drug delivery systems. Biomaterials. 9:489–493 (1988). doi:10.1016/0142-9612(88)90043-9.

    Article  PubMed  CAS  Google Scholar 

  72. S. Conti, L. Maggi, L. Segale, E. Ochoa Machiste, U. Conte, P. Grenier, and G. Vergnault. Matrices containing NaCMC and HPMC 1. Dissolution performance characterization. Int J Pharm. 333:136–42 (2007). doi:10.1016/j.ijpharm.2006.11.059.

    Article  PubMed  CAS  Google Scholar 

  73. P. L. Catellani, P. Colombo, N. A. Peppas, P. Santi, and R. Bettini. Partial permselective coating adds an osmotic contribution to drug release from swellable matrixes. J Pharm Sci. 87:726–31 (1998). doi:10.1021/js9800026.

    Article  PubMed  CAS  Google Scholar 

  74. K. J. Edgar. Cellulose esters in drug delivery. Cellulose. 14:49–64 (2007). doi:10.1007/s10570-006-9087-7.

    Article  CAS  Google Scholar 

  75. F. Lecomte, J. Siepmann, M. Walther, R. J. MacRae, and R. Bodmeier. pH-Sensitive polymer blends used as coating materials to control drug release from spherical beads: elucidation of the underlying mass transport mechanisms. Pharm Res. 22:1129–41 (2005). doi:10.1007/s11095-005-5421-2.

    Article  PubMed  CAS  Google Scholar 

  76. F. Lecomte, J. Siepmann, M. Walther, R. J. Macrae, and R. Bodmeier. pH-sensitive polymer blends used as coating materials to control drug release from spherical beads: importance of the type of core. Biomacromolecules. 6:2074–83 (2005). doi:10.1021/bm0500704.

    Article  PubMed  CAS  Google Scholar 

  77. F. Lecomte, J. Siepmann, M. Walther, R. J. MacRae, and R. Bodmeier. Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer. J Control Release. 99:1–13 (2004). doi:10.1016/j.jconrel.2004.05.011.

    Article  PubMed  CAS  Google Scholar 

  78. F. Lecomte, J. Siepmann, M. Walther, R. J. MacRae, and R. Bodmeier. Polymer blends used for the coating of multiparticulates: comparison of aqueous and organic coating techniques. Pharm Res. 21:882–90 (2004). doi:10.1023/B:PHAM.0000026443.71935.cb.

    Article  PubMed  CAS  Google Scholar 

  79. P. W. S. Heng, J. H. Hao, L. W. Chan, and S. H. Chew. Influence of osmotic agents in diffusion layer on drug release from multilayer coated pellets. Drug Dev Ind Pharm. 30:213–220 (2004). doi:10.1081/DDC-120028717.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Dr. Pedro Barata (Faculdade de Ciências da Saúde, Universidade Fernando Pessoa - Porto, Portugal) and Dr. Orazio Luca Strusi for their precious help in collecting the gamma scintigraphy images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Colombo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, P., Sonvico, F., Colombo, G. et al. Novel Platforms for Oral Drug Delivery. Pharm Res 26, 601–611 (2009). https://doi.org/10.1007/s11095-008-9803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9803-0

KEY WORDS

Navigation