Skip to main content

Advertisement

Log in

Methods for the Preparation and Manufacture of Polymeric Nanoparticles

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

This review summarizes the different methods of preparation of polymer nanoparticles including nanospheres and nanocapsules. The first part summarizes the basic principle of each method of nanoparticle preparation. It presents the most recent innovations and progresses obtained over the last decade and which were not included in previous reviews on the subject. Strategies for the obtaining of nanoparticles with controlled in vivo fate are described in the second part of the review. A paragraph summarizing scaling up of nanoparticle production and presenting corresponding pilot set-up is considered in the third part of the review. Treatments of nanoparticles, applied after the synthesis, are described in the next part including purification, sterilization, lyophilization and concentration. Finally, methods to obtain labelled nanoparticles for in vitro and in vivo investigations are described in the last part of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. J. C. Allémann Leroux, and R. Gurny. Polymeric nano-and microparticles for the oral delivery of peptides and peptidomimetics. Adv. Drug Deliv. Rev. 34(2–3):171–189 (1998). doi:10.1016/S0169-409X(98)00039-8.

    Google Scholar 

  2. P. Couvreur, and C. Vauthier. Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 23:1417–1450 (2006). doi:10.1007/s11095-006-0284-8.

    PubMed  CAS  Google Scholar 

  3. R. Juliano, M. R. Alam, V. Dixit, and H. Kang. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 36(12):4158–4171 (2008). doi:10.1093/nar/gkn342.

    PubMed  CAS  Google Scholar 

  4. C. Pinto-Reis, R. J. Neufeld, A. J. Ribeiro, and F. Veiga. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2:8–21 (2006).

    PubMed  Google Scholar 

  5. A. F. Soares, R. A. de Carvalho, and F. Veiga. Oral administration of peptides and proteins: nanoparticles and cyclodextrins as biocompatible delivery systems. Nanomedicine. 2(2):183–202 (2007). doi:10.2217/17435889.2.2.183.

    PubMed  CAS  Google Scholar 

  6. C. Vauthier, and D. Labarre. Modular biomimetic drug delivery systems. J. Drug Deliv. Sci. Technol. 18(1):59–68 (2008).

    CAS  Google Scholar 

  7. H. de Martimprey, C. Vauthier, C. Malvy, and P. Couvreur. Polymer nanocarriers for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA. Eur. J. Pharm. Biopharm., in press (2008)

  8. C. Pichot, and J. C. Daniel (eds.), Latex Synthétiques : Elaboration-Propriétés-Applications, Lavoisier, Paris, France, 2006.

  9. W. A. Braunecker, and K. Matyjaszewski. Controlled/living radical polymerization: features, developments and perspectives. Prog. Polymer. Sci. 33:93–146 (2007). doi:10.1016/j.progpolymsci.2006.11.002.

    Google Scholar 

  10. C. Vauthier-Holtzscherer, S. Benabbou, G. Spenlehauer, M. Veillard, and P. Couvreur. Methodology for the preparation of ultradispersed polymer systems. STP Pharma Sci. 1:109–116 (1991).

    CAS  Google Scholar 

  11. E. Allémann, R. Gurny, and E. Doelker. Drug loaded nanoparticles. Preparation, methods and drug targeting issues. Eur. J. Pharm. Biopharm. 39:173–191 (1993).

    Google Scholar 

  12. D. Quintanar-Guerrero, E. Allémann, H. Fessi, and E. Doelker. Preparation techniques and mechanism of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24:1113–1128 (1998). doi:10.3109/03639049809108571.

    PubMed  CAS  Google Scholar 

  13. F. De Jaeghere, E. Doelker, and R. Gurny. Nanoparticles. In E. Mathiowitz (ed.), The Encyclopedia of Controlled Drug Delivery, Wiley, New York, 1999, pp. 641–664.

    Google Scholar 

  14. P. Couvreur, G. Barratt, E. Fattal, P. Legrand, and C. Vauthier. Nanocapsule technology: a review. Crit. Rev. Ther. Drug. Carrier Syst. 19(2):99–134 (2002). doi:10.1615/CritRevTherDrugCarrierSyst.v19.i2.10.

    PubMed  CAS  Google Scholar 

  15. C. Vauthier, E. Fattal, and D. Labarre. From polymer chemistry and physicochemistry to nanoparticular drug carrier design and applications. In M. J. Yaszemski, D. J. Trantolo, K. U. Lewamdrowski, V. Hasirci, D. E. Altobelli, and D. L. Wise (eds.), Biomaterial Handbook-Advanced Applications of Basic Sciences and Bioengineering, Marcel Dekker, New York, 2004, pp. 563–598.

    Google Scholar 

  16. D. Moinard-Chécot, Y. Chevalier, S. Briançon, H. Fessi, and S. Guinebretière. Nanoparticles for drug delivery: review of the formulation and process difficulties illustrated by the emulsion-diffusion process. J. Nanosci. Nanotechnol. 6(9–10):2664–2681 (2006). doi:10.1166/jnn.2006.479.

    PubMed  Google Scholar 

  17. C. Vauthier. Généralités sur les techniques d’émulsification et d’obtention de dispersions de particules polymère : avantages et inconvénients. In C. Pichot et, and J. C. Daniel (eds.), Latex Synthétiques : Elaboration-Propriétés-Applications, Lavoisier, Paris, 2006, pp. 291–317.

    Google Scholar 

  18. N. Al Khoury-Fallouh, L. Roblot-Treupel, H. Fessi, J. P. Devissaguet, and F. Puisieux. Development of a new process for the manufacture of poly(isobutylcyanoacrylate) nanocapsules. Int. J. Pharm. 28:125–136 (1986). doi:10.1016/0378-5173(86)90236-X.

    Google Scholar 

  19. H. Vranckx, M. Demoustier, and M. Deleers. A new nanocapsule formulation with hydrophilic core: Application to the oral administration of salmon calcitonin in rats. J. Pharm. Pharmacol. 42:345–347 (1996).

    CAS  Google Scholar 

  20. G. Lambert, E. Fattal, H. Pinto-Alphandary, A. Gulik, and P. Couvreur. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm. Res. 17(6):707–714 (2000). doi:10.1023/A:1007582332491.

    PubMed  CAS  Google Scholar 

  21. M. Wohlgemuth, W. Mächtle, and C. Mayer. Improved preparation and physical studes of polybutylcyanoacrylate nanocapsules. J. Microencapsulation. 17:437–448 (2000). doi:10.1080/026520400405697.

    PubMed  CAS  Google Scholar 

  22. C. Mayer. Nanocapsules as drug delivery systems. Int. J. Artif. Organs. 28(11):1163–1171 (2005).

    PubMed  CAS  Google Scholar 

  23. H. Hillaireau, T. Le Doan, M. Appel, and P. Couvreur. Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J. Control. Release. 116:346–352 (2006). doi:10.1016/j.jconrel.2006.09.016.

    PubMed  CAS  Google Scholar 

  24. S. Watnasirichaikul, T. Rades, I. G. Tucker, and N. M. Davies. Effects of formulation variables on characteristics of poly(ethylcyanoacrylate) nanocapsules prepared from w/o microemulsions. Int. J. Pharm. 235:237–246 (2002). doi:10.1016/S0378-5173(02)00002-9.

    PubMed  CAS  Google Scholar 

  25. K. Bouchemal, S. Briançon, E. Perrier, H. Fessi, I. Bonnet, and N. Zydowicz. Synthesis and characterization of polyurethane and poly (ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int. J. Pharm. 269(1):89–100 (2004). doi:10.1016/j.ijpharm.2003.09.025.

    PubMed  CAS  Google Scholar 

  26. K. Bouchemal, S. Briançon, H. Fessi, Y. Chevalier, I. Bonnet, and E. Perrier. Simultaneous emulsification and interfacial polycondensation for the preparation of colloidal suspension of nanocapsules. Mater. Sci. Eng. C. 26:472–480 (2006). doi:10.1016/j.msec.2005.10.022.

    CAS  Google Scholar 

  27. N. Ammoury, H. Fessi, J. P. Devissaguet, F. Puisieux, and S. Benita. In vitro release kinetic pattern of indomethacin from poly(D,L-lactide) nanocapsules. J. Pharm. Sci. 79(9):763–767 (1990). doi:10.1002/jps.2600790902.

    PubMed  CAS  Google Scholar 

  28. D. Quintanar-Guerrero, É. Allémann, É. Doelker, and H. Fessi. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification–diffusion technique. Pharm. Res. 15:1056–1062 (1998). doi:10.1023/A:1011934328471.

    PubMed  CAS  Google Scholar 

  29. M. F. Zambaux, F. Bonneaux, R. Gref, P. Maincent, E. Dellacherie, M. J. Alonso, P. Labrude, and C. Vigneron. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Release. 50(1–3):31–40 (1998). doi:10.1016/S0168-3659(97)00106-5.

    PubMed  CAS  Google Scholar 

  30. D. Moinard-Chécot, Y. Chevalier, S. Briançon, L. Beney, and H. Fessi. Mechanism of nanocapsules formation by the emulsion–diffusion process. J. Colloid Interface Sci. 317:458–468 (2008). doi:10.1016/j.jcis.2007.09.081.

    PubMed  Google Scholar 

  31. M. Skiba. Developpement pharmacotechnique et biopharmaceutique de nouveaux vecteurs colloidaux : nanoparticles à base de cyclodextrines modifiées. Ph.D. Université de Paris Sud-11, décembre 1994.

  32. C. Vauthier, and P. Couvreur. Development of nanoparticles made of polysaccharides as novel drug carrier systems. In D. L. Wise (ed.), Handbook of Pharmaceutical Controlled Release Technology, Marcel Dekker, New York, 2000, pp. 413–429.

    Google Scholar 

  33. E. Martinez-Barbosa. Synthèse de dérivés de poly(L-glutamate de γ-benzyle). Préparation et caractérisation de nanoparticules multifonctionnelles. Ph. D. Université Paris Sud-11. 2006.

  34. N. Toub, C. Malvy, E. Fattal, and P. Couvreur. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed. Pharmacother. 60(9):607–620 (2006). doi:10.1016/j.biopha.2006.07.093.

    PubMed  CAS  Google Scholar 

  35. C. Perez, A. Sanchez, D. Putnam, D. Ting, R. Langer, and M. J. Alonso. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J. Control. Release. 75:211–224 (2001). doi:10.1016/S0168-3659(01)00397-2.

    PubMed  CAS  Google Scholar 

  36. C. G. Oster, M. Wittmar, F. Unger, L. Barbu-Tudoran, A. K. Schaper, and T. Kissel. Design of amine-modified graft polyesters for effective gene delivery using DNA-loaded nanoparticles. Pharm. Res. 21(6):927–931 (2004). doi:10.1023/B:PHAM.0000029279.50733.55.

    PubMed  CAS  Google Scholar 

  37. V. Vogel, D. Lochmann, J. Weyermann, G. Mayer, C. Tziatzios, J. A. van den Broek, W. Haase, D. Wouters, U. S. Schubert, J. Kreuter, A. Zimmer, and D. Schubert. Oligonucleotide–protamine–albumin nanoparticles: preparation, physical properties and intracellular distribution. J. Control. Release. 103(1, 2):99–111 (2005).

    PubMed  CAS  Google Scholar 

  38. N. Nafee, S. Taetz, M. Schneider, U. F. Schaefer, and C. M. Lehr. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine. 3(3):173–183 (2007).

    PubMed  CAS  Google Scholar 

  39. H. Hillaireau, T. Le Doan, H. Chacun, J. Janin, and P. Couvreur. Encapsulation of mono-and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int. J. Pharm. 331(2):148–152 (2007). doi:10.1016/j.ijpharm.2006.10.031.

    PubMed  CAS  Google Scholar 

  40. C. Chavany, T. Le Doan, P. Couvreur, F. Puisieux, and C. Hélèna. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm. Res. 9(4):441–449 (1992). doi:10.1023/A:1015871809313.

    PubMed  CAS  Google Scholar 

  41. P. Zobel, M. Junghans, V. Maienschein, D. Werner, M. Gilbert, H. Zimmermann, C. Noe, J. Kreuter, and A. Zimmer. Enhanced antisense efficacy of oligonucleotides adsorbed to monomethylaminoethylmethacrylate methylmethacrylate copolymer nanoparticles. Eur. J. Pharm. Biopharm. 49(3):203–210 (2000). doi:10.1016/S0939-6411(00)00080-1.

    PubMed  CAS  Google Scholar 

  42. H. de Martimprey, J. R. Bertrand, A. Fusco, M. Santoro, P. Couvreur, C. Vauthier, and C. Malvy. siRNA nanoformulation against the ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Res. 36(1):e2 (2008). doi:10.1093/nar/gkm1094.

    PubMed  Google Scholar 

  43. M. Okada. Chemical synthesis of biodegradable polymers. Prog. Polym. Sci. 27:87–133 (2002). doi:10.1016/S0079-6700(01)00039-9.

    CAS  Google Scholar 

  44. L. Y Qiu, and Y. H. Bae. Polymer architecture and drug delivery. Pharm. Res. 23(1):1–30 (2006). doi:10.1007/s11095-005-9046-2.

    Google Scholar 

  45. S. Slomkovski. Biodegradable nano-and microparticles as carriers of bioactive compounds. Acta Pol. Pharm. 63(5):351–358 (2006).

    Google Scholar 

  46. L. S. Nair, and C. T. Laurencin. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32:762–789 (2007). doi:10.1016/j.progpolymsci.2007.05.017.

    CAS  Google Scholar 

  47. V. P. Torchilin, and V. S. Trubetskoy. Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev. 16:141–155 (1995). doi:10.1016/0169-409X(95)00022-Y.

    CAS  Google Scholar 

  48. K. Avgoustakis. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr. Drug Deliv. 1(4):321–333 (2004). doi:10.2174/1567201043334605.

    PubMed  CAS  Google Scholar 

  49. V. C. Mosqueira, P. Legrand, J. L. Morgat, M. Vert, E. Mysiakine, R. Gref, J. P. Devissaguet, and G. Barratt. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm. Res. 18(10):1411–1419 (2001). doi:10.1023/A:1012248721523.

    PubMed  CAS  Google Scholar 

  50. C. Lemarchand, P. Couvreur, C. Vauthier, D. Costantini, and R. Gref. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. Int. J. Pharm. 254(1):77–82 (2003). doi:10.1016/S0378-5173(02)00687-7.

    PubMed  CAS  Google Scholar 

  51. C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier. Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm. Res. 20:1786–1793 (2003). doi:10.1023/B:PHAM.0000003376.57954.2a.

    PubMed  CAS  Google Scholar 

  52. C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier. A new approach for the characterization of insoluble amphiphilic copolymers based on their emulsifying properties. Colloid Polym. Sci. 282:1097–1104 (2004). doi:10.1007/s00396-003-1040-9.

    CAS  Google Scholar 

  53. N. Anton, J. P. Benoit, and P. Saulnier. Design and production of nanoparticles formulated from nano-emulsion templates-A review. J. Control. Release. 128:185–199 (2008). doi:10.1016/j.jconrel.2008.02.007.

    PubMed  CAS  Google Scholar 

  54. M. Stork, R. L. Tousain, J. A. Wieringa, and O. H. Bosgra. A MILP approach to the optimization of the operation procedure of a fed-batch emulsification process in a stirred vessel. Comp. Chem. Eng. 27:1681–1691 (2003). doi:10.1016/S0098-1354(03)00135-2.

    CAS  Google Scholar 

  55. C. Mabille, F. Leal-Calderon, J. Bibette, and V. Schmitt. Monodisperse fragmentation in emulsions: Mechanisms and kinetics. Europhys. Lett. 61(5):708–714 (2003). doi:10.1209/epl/i2003-00133-6.

    CAS  Google Scholar 

  56. C. Charcosset, and H. Fessi. Preparation of nanoparticles with a membrane contactor. J. Membrane Sci. 266:115–120 (2005). doi:10.1016/j.memsci.2005.05.016.

    CAS  Google Scholar 

  57. S. Freitas, H. P. Merkle, and B. Gander. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release. 102(2):313–332 (2005). doi:10.1016/j.jconrel.2004.10.015.

    PubMed  CAS  Google Scholar 

  58. I. Kobayashi, S. Mukataka, and M. Nakajima. Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification, experimental and CFD studies. Langmuir. 21(13):5722–2730 (2005). doi:10.1021/la050039n.

    PubMed  CAS  Google Scholar 

  59. M. J. Geerken, R. G. H. Lammertink, and M. Wessling. Interfacial aspects of water drop formation at micro-engineered orifices. J. Colloid Interface Sci. 312(2):460–446 (2007). doi:10.1016/j.jcis.2007.03.074.

    PubMed  CAS  Google Scholar 

  60. C. Charcosset, A. El-Harati, and H. Fessi. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release. 108:112–120 (2005). doi:10.1016/j.jconrel.2005.07.023.

    PubMed  CAS  Google Scholar 

  61. I. Limayem Blouza, C. Charcosset, S. Sfar, and H. Fessi. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int. J. Pharm. 325:124–131 (2006). doi:10.1016/j.ijpharm.2006.06.022.

    PubMed  CAS  Google Scholar 

  62. N. Sheibat-Othman, T. Burne, C. Charcosset, and H. Fessi. Preparation of pH-sensitive particles by membrane contactor. Colloid Surf. A. 315:13–22 (2008). doi:10.1016/j.colsurfa.2007.07.003.

    CAS  Google Scholar 

  63. S. Desgouilles, C. Vauthier, D. Bazile, J. Vacus, J.-L. Grossiord, M. Veillard, and P. Couvreur. The design of nanoparticles obtained by solvent evaporation: a comprehensive study. Langmuir. 19(22):9504–9510 (2003). doi:10.1021/la034999q.

    CAS  Google Scholar 

  64. S. A. Vitale, and J. L. Katz. Liquid droplet dispersions formed by homogeneous liquid-liquid nucleation: “The ouzo effect”. Langmuir. 19(10):4105–4110 (2003). doi:10.1021/la026842o.

    CAS  Google Scholar 

  65. K. Bouchemal, S. Briançon, E. Perrier, and H. Fessi. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimization. Int. J. Pharm. 280(1–2):241–251 (2004). doi:10.1016/j.ijpharm.2004.05.016.

    PubMed  CAS  Google Scholar 

  66. F. Ganachaud, and J. Katz. Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. Chem. Phys. Chem. 6:209–216 (2005). doi:10.1002/cphc.200400527.

    CAS  Google Scholar 

  67. J. W. Nah, T. R. Jung, Y. L. Jeong, M. K. Jang. Biodegradable nanoparticles of poly(DL-lactide-co-glycolide) encapsulating ciprofloxacin HCl having an extended-release property and manufacturing method thereof. World Patent 054042 (2008).

  68. C. K. Weiss, U. Ziener, and K. Landfester. A route to nonfunctionalized and functionalized poly(n-butylcyanoacrylate) nanoparticles: preparation in miniemulsion. Macromolecules. 40(4):928–938 (2007). doi:10.1021/ma061865l.

    CAS  Google Scholar 

  69. K. Landfester. Polyreactions in miniemulsions. Macromol. Rapid Comm. 22:896–936 (2001). doi:10.1002/1521-3927(20010801)22:12<896::AID-MARC896>3.0.CO;2-R.

    Google Scholar 

  70. J. Qiu, B. Charleux, and K. Matyjaszewski. Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Prog. Polym. Sci. 26:2083–2134 (2001). doi:10.1016/S0079-6700(01)00033-8.

    CAS  Google Scholar 

  71. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science. 263:1600–1603 (1994). doi:10.1126/science.8128245.

    PubMed  CAS  Google Scholar 

  72. D. Bazile, C. Prud’homme, M. T. Bassoulet, M. Marlard, G. Spenlehauer, and M. Veillard. Stealth Me-PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 84:493–498 (1995). doi:10.1002/jps.2600840420.

    PubMed  CAS  Google Scholar 

  73. C. Lemarchand, P. Couvreur, M. Besnard, D. Costantini, and R. Gref. Novel polyester-polysaccharide nanoparticles. Pharm. Res. 20(8):1284–1292 (2003). doi:10.1023/A:1025017502379.

    PubMed  CAS  Google Scholar 

  74. R. Gurny, N. A. Peppas, D. D. Harrington, and G. S. Banker. Development of biodegradable and injectable lattices for controlled release potent drugs. Drug. Dev. Ind. Pharm. 7:1–25 (1981). doi:10.3109/03639048109055684.

    CAS  Google Scholar 

  75. E. Allémann, R. Gurny, and E. Doelker. Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int. J. Pharm. 87(1–3):247–253 (1992). doi:10.1016/0378-5173(92)90249-2.

    Google Scholar 

  76. W. Y. Dong, M. Körber, V. López Esguerra, and R. Bodmeier. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J. Control. Release. 115(2):158–167 (2006). doi:10.1016/j.jconrel.2006.07.013.

    PubMed  CAS  Google Scholar 

  77. F. Delie, M. Berton, E. Allémann, and R. Gurny. Comparison of two methods of encapsulation of an oligonucleotide into Poly(D,L-Lactic Acid) particles. Int. J. Pharm. 214:25–30 (2001). doi:10.1016/S0378-5173(00)00627-X.

    PubMed  CAS  Google Scholar 

  78. U. Bilati, E. Allémann, and E. Doelker. Poly(D,L-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method—processing and formulation issues for enhanced entrapment efficiency. J. Microencapsul. 22(2):205–214 (2005). doi:10.1080/02652040400026442.

    PubMed  CAS  Google Scholar 

  79. J. W. Vanderhoff, M. S. El Aasser, and J. Ugelstad. Polymer emulsification process. US Patent 4,177,177 (1979).

  80. D. Quintanar-Guerrero, E. Allémann, H. Fessi, and E. Doelker. Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int. J. Pharm. 188(2):155–164 (1999). doi:10.1016/S0378-5173(99)00216-1.

    PubMed  CAS  Google Scholar 

  81. R. C. Mundargi, V. R. Babu, V. Rangaswamy, P. Patel, and T. M. Aminabhavi. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release. 125(3):193–209 (2008). doi:10.1016/j.jconrel.2007.09.013.

    PubMed  CAS  Google Scholar 

  82. I. Brigger, P. Chaminade, D. Desmaële, M. T. Peracchia, J. d’Angelo, R. Gurny, M. Renoir, and P. Couvreur. Near infrared with principal component analysis as a novel analytical approach for nanoparticle technology. Pharm. Res. 17(9):1124–1132 (2000). doi:10.1023/A:1026465931525.

    PubMed  CAS  Google Scholar 

  83. J. C. Leroux, E. Allemann, E. Doelker, and R. Gurny. New approach for the preparation of nanoparticles by an emulsification–diffusion method. Eur. J. Pharm. Biopharm. 41(1):14–18 (1995).

    CAS  Google Scholar 

  84. D. Quintanar-Guerrero, E. Allémann, E. Doelker, and H. Fessi. A mechanistic study of the formation of polymer nanoparticles by the emulsification–diffusion technique. Colloid Polym. Sci. 275:640–647 (1997). doi:10.1007/s003960050130.

    CAS  Google Scholar 

  85. D. Quintanar-Guerrero, É. Allémann, H. Fessi, and E. Doelker. Influence of stabilizing agents and preparative variables on the formation of poly(-lactic acid) nanoparticles by an emulsification–diffusion technique. Int. J. Pharm. 143:133–141 (1996). doi:10.1016/S0378-5173(96)04697-2.

    CAS  Google Scholar 

  86. S. Guinebretière. Nanocapsules par émulsion–diffusion de solvant: obtention, caractérisation et mécanisme de formation. Ph.D. Université Claude Bernard Lyon 1 (2001).

  87. D. Quintanar-Guerrero, D. Tamayo-Esquivel, A. Ganem-Quintanar, E. Allémann, and E. Doelker. Adaptation and optimization of the emulsification–diffusion technique to prepare lipidic nanospheres. Eur. J. Pharm. Sci. 26:211–218 (2005). doi:10.1016/j.ejps.2005.06.001.

    PubMed  CAS  Google Scholar 

  88. M. Trotta, F. Debernardi, and O. Caputo. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int. J. Pharm. 257:153–160 (2003). doi:10.1016/S0378-5173(03)00135-2.

    PubMed  CAS  Google Scholar 

  89. L. Battaglia, M. Trotta, M. Gallarate, M. E. Carlotti, G. P. Zara, and A. Bargoni. Solid lipid nanoparticles formed by solvent-in-water emulsion–diffusion technique: Development and influence on insulin stability. J. Microencapsul. 24:672–684 (2007). doi:10.1080/02652040701532981.

    Google Scholar 

  90. D. Quintanar-Guerrero, A. Ganem-Quintanar, E. Allemann, H. Fessi, and E. Doelker. Influence of the stabilizer coating layer on the purification and freeze-drying of poly(D,L-lactic acid) nanoparticles prepared by an emulsion–diffusion technique. J. Microencapsul. 15:107–119 (1998). doi:10.3109/02652049809006840.

    PubMed  CAS  Google Scholar 

  91. F. F. De Jaeghere, E. Allémann, F. Kubel, B. Galli, R. Cozens, E. Doelker, and R. Gurny. Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional state. J. Control. Release. 68(2):291–298 (2000). doi:10.1016/S0168-3659(00)00272-8.

    PubMed  Google Scholar 

  92. M. Berton, E. Allemann, C. A. Stein, and R. Gurny. Highly loaded nanoparticulate carrier using an hydrophobic antisense oligonucleotide complex. Eur. J. Pharm. Sci. 9(2):163–170 (1999). doi:10.1016/S0928-0987(99)00049-4.

    PubMed  CAS  Google Scholar 

  93. Y. N. Konan, R. Cerny, J. Favet, M. Berton, R. Gurny, and E. Allémann. Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur. J. Pharm. Biopharm. 55:115–124 (2003). doi:10.1016/S0939-6411(02)00128-5.

    PubMed  CAS  Google Scholar 

  94. H. S. Yoo, J. E. Oh, K. H. Lee, and T. G. Park. Biodegradable nanoparticles containing PLGA conjugate for sustained release. Pharm. Res. 16:1114–1118 (1996). doi:10.1023/A:1018908421434.

    Google Scholar 

  95. S. Guinebretière, S. Briancon, H. Fessi, V. S. Teodorescu, and M. G. Blanchin. Nanocapsules of biodegradable polymers: preparation and characterization by direct high resolution electron microscopy. Mater. Sci. Eng. C. 21:137–142 (2002). doi:10.1016/S0928-4931(02)00073-5.

    Google Scholar 

  96. D. Quintanar, H. Fessi, É. Doelker, and E. Allémann, Procédé de préparation de nanocapsules de type vésiculaire. World Patent 004766 (1999).

  97. H. Ibrahim, C. Bindschaedler, E. Doelker, P. Buri, and R. Gurny. Aqueous nanodispersions prepared by a salting-out process. Int. J. Pharm. 87:239–246 (1992). doi:10.1016/0378-5173(92)90248-Z.

    CAS  Google Scholar 

  98. E. Allémann, J. C. Leroux, R. Gurny, and E. Doelker. In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm. Res. 10:1732–1737 (1993). doi:10.1023/A:1018970030327.

    PubMed  Google Scholar 

  99. E. Allémann, E. Doelker, and R. Gurny. Drug loaded poly(lactic acid) nanoparticles produced by a reversible salting-out process: purification of an injectable dosage form. Eur. J. Pharm. Biopharm. 39:13–18 (1993).

    Google Scholar 

  100. N. Wang, and X. S. Wu. Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm. Dev. Technol. 2:135–142 (1997). doi:10.3109/10837459709022618.

    PubMed  CAS  Google Scholar 

  101. H. Tokumitsu, H. Ichikawa, Y. Fukumori, J. Hiratsuka, Y. Sakurai, and T. Kobayashi. Preparation of gadopentenate-loaded nanoparticles for gadolinium neutron capture therapy of cancer using a novel emulsion droplet coalescence technique. Proc. 2nd world meeting APGI/APV, Paris, France, 25–28 Mai 1998, pp. 641–642 (1998).

  102. C. Pinto-Reis, A. J. Ribeiro, F. Veiga, R. J. Neufeld, and C. Damgé. Polyelectrolyte biomaterial interactions provide nanoparticulate carrier for oral insulin delivery. Drug. Deliv. 15(2):127–139 (2008). doi:10.1080/10717540801905165.

    Google Scholar 

  103. P. Couvreur, B. Kante, M. Roland, P. Guiot, P. Baudhuin, and P. Speiser. Poly(cyanoacrylate) nanoparticles as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J. Pharm. Pharmacol. 31:331–332 (1979).

    PubMed  CAS  Google Scholar 

  104. C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier. A radical emulsion polymerization of alkylcyanoacrylates initiated by the redox system dextran–cerium IV in acidic aqueous conditions. Macromolecules. 36:6018–6027 (2003). doi:10.1021/ma034097w.

    CAS  Google Scholar 

  105. I. Bertholon, S. Lesieur, D. Labarre, M. Besnard, and C. Vauthier. Characterization of dextran-poly(isobutylcyanoacrylate) copolymers obtained by redox radical and anionic emulsion polymerization. Macromolecules. 39:3559–3567 (2006). doi:10.1021/ma060338z.

    CAS  Google Scholar 

  106. I. Bertholon, C. Vauthier, and D. Labarre. Complement Activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length and type of polysaccharide. Pharm. Res. 23:1313–1323 (2006). doi:10.1007/s11095-006-0069-0.

    PubMed  CAS  Google Scholar 

  107. M. R. Gasco, and M. Trotta. Nanoparticles from microemulsions. Int. J. Pharm. 29:267–268 (1986). doi:10.1016/0378-5173(86)90125-0.

    CAS  Google Scholar 

  108. S. Watnasirichaikul, M. N. Davies, R. Rades, and I. G. Tucker. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm. Res. 17:684–689 (2000). doi:10.1023/A:1007574030674.

    PubMed  CAS  Google Scholar 

  109. K. Bouchemal, F. Couenne, S. Briançon, H. Fessi, and M. Tayakout. Stability studies on colloidal suspensions of polyurethane nanocapsules. J. Nanosci. Nanotechno. 6:3187–3192 (2006). doi:10.1166/jnn.2006.468.

    CAS  Google Scholar 

  110. C. Vauthier, D. Labarre, and G. Ponchel. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J. Drug. Targeting. 15:641–663 (2007). doi:10.1080/10611860701603372.

    CAS  Google Scholar 

  111. C. Pinto-Reis, R. J. Neufeld, A. J. Ribeiro, and F. Veiga. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine. 2(2):53–65 (2006).

    PubMed  Google Scholar 

  112. G. E. Ghanem, C. Joubran, R. Arnould, F. Lejeune, and J. Fruhling. Labelled polycyanoacrylate nanoparticles for human in vivo use. Appl. Radiat. Isotopes. 44(9):1219–1224 (1993). doi:10.1016/0969-8043(93)90068-L.

    CAS  Google Scholar 

  113. R. K. Kulkarni, D. E. Bartak, and F. Leonard. Initiation of polymerization of alkyl 2-cyanoacrylates in aqueous solutions of glycine and its derivatives. J. Polym. Sci. A. Polym. Chem. 9(10):2977–2981 (1971).

    CAS  Google Scholar 

  114. S. J. Douglas, L. Illum, and S. S. Davis. Particle size and size distribution of poly(butyl 2-cyanoacrylate) nanoparticles. II. Influence of stabilizers. J. Colloid Interface Sci. 103:154–163 (1985). doi:10.1016/0021-9797(85)90087-6.

    CAS  Google Scholar 

  115. M. T. Peracchia, C. Vauthier, M. Popa, F. Puisieux, and P. Couvreur. An investigation on the formation of sterically stabilized PEG-PIBCA nanoparticles by chemical grafting of PEG during the polymerization of isobutylcyanoacrylate. STP Pharma Sci. 7:514–521 (1997).

    Google Scholar 

  116. C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier. Plug-in spectrometry with optical fibers as a novel analytical tool for nanoparticles technology: application to the investigation of the emulsion polymerization of the alkylcyanoacrylate. J. Nanopart. Res. 5:365–371 (2003). doi:10.1023/A:1025575730542.

    CAS  Google Scholar 

  117. S. C. Yang, H. X. Ge, Y. Hu, X. Q. Jiang, and C. Z. Yang. Formation of positively charged poly(butyl cyanoacrylate) nanoparticles stabilized by chitosan. Colloid Polym. Sci. 278:285–292 (2000). doi:10.1007/s003960050516.

    CAS  Google Scholar 

  118. D. Labarre, C. Vauthier, C. Chauvierre, B. Petri, R. Müller, and M. M. Chehimi. Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials. 26(24):5075–5084 (2005). doi:10.1016/j.biomaterials.2005.01.019.

    PubMed  CAS  Google Scholar 

  119. I. Bravo-Osuna, G. Ponchel, and C. Vauthier. Tuning of shell and core characteristics of chitosan-decorated acrylic nanoparticles. Eur. J. Pharm. Sci. 30:143–154 (2007). doi:10.1016/j.ejps.2006.10.007.

    PubMed  CAS  Google Scholar 

  120. I. Bravo Osuna, C. Vauthier, and G. Ponchel. Core-shell polymer nanoparticle formulations for the oral administration of peptides and proteins. In A. O. Hartmann, and L. K. Newmann (eds.), Drugs: Approval, Evaluation, Delivery and Control, Novapublishers, New York, 2008, pp. 35–71.

    Google Scholar 

  121. M. T. Peracchia, C. Vauthier, C. Passirani, P. Couvreur, and D. Labarre. Complement consumption by poly(ethylene glycol) in different configurations chemically coupled to polyisobutylcyanoacrylate nanoparticles. Life Sci. 61:749–761 (1997). doi:10.1016/S0024-3205(97)00539-0.

    PubMed  CAS  Google Scholar 

  122. C. Passirani, G. Barratt, J. P. Devissaguet, and D. Labarre. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res. 15(7):1046–1050 (1998). doi:10.1023/A:1011930127562.

    PubMed  CAS  Google Scholar 

  123. I. Bravo-Osuna, C. Vauthier, A. Farabollini, G. F. Palmieri, and G. Ponchel. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials. 28(13):2233–2243 (2007). doi:10.1016/j.biomaterials.2007.01.005.

    PubMed  CAS  Google Scholar 

  124. I. Bravo-Osuna, C. Vauthier, H. Chacun, and G. Ponchel. Specific permeability modulation of intestinal paracellular pathway by chitosan-poly(isobutylcyanoacrylate) core-shell nanoparticles. Eur. J. Pharm. Biopharm. 69:436–444 (2008). doi:10.1016/j.ejpb.2007.12.012.

    PubMed  CAS  Google Scholar 

  125. M. Aboubakar, F. Puisieux, P. Couvreur, M. Deyme, and C. Vauthier. Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. J. Biomed. Mater. Res. 47:568–576 (1999). doi:10.1002/(SICI)1097-4636(19991215)47:4<568::AID-JBM14>3.0.CO;2-X.

    PubMed  CAS  Google Scholar 

  126. M. Gallardo, G. Couarraze, B. Denizot, L. Treupel, P. Couvreur, and F. Puisieux. Study of the mechanism of formation of nanoparticles and nanocapsules of poly(isobutyl-2-cyanoacrylate). Int. J. Pharm. 100:55–64 (1993). doi:10.1016/0378-5173(93)90075-Q.

    CAS  Google Scholar 

  127. G. Puglisi, M. Fresta, G. Giammona, and C. A. Ventura. Influence of the preparation conditions on poly(ethylcyanoacrylate) nanocapsule formation. Int. J. Pharm. 125:283–287 (1995). doi:10.1016/0378-5173(95)00142-6.

    CAS  Google Scholar 

  128. N. Altinbas, C. Fehmer, A. Terheiden, A. Shukla, H. Rehage, and C. Mayer. Alkylcyanoacrylate nanocapsules prepared from mini-emulsions: a comparison with the conventional approach. J. Microencapsul. 23(5):567–581 (2006). doi:10.1080/02652040600776424.

    PubMed  CAS  Google Scholar 

  129. C. Y. Huang, C. M. Chen, and Y. D. Lee. Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int. J. Pharm. 338(1–2):267–275 (2007). doi:10.1016/j.ijpharm.2007.01.052.

    PubMed  CAS  Google Scholar 

  130. K. Krauel, N. M. Davies, S. Hook, and T. Rades. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. J. Control. Release. 106:76–87 (2005). doi:10.1016/j.jconrel.2005.04.013.

    PubMed  CAS  Google Scholar 

  131. I. Montasser, H Fessi, S. Briançon, and J. Lieto. Procédé de préparation de particules colloïdales sous forme de nanocapsules. World Patent 0168235 (2001).

  132. I. Montasser, S. I. Briançon, and H. Fessi. The effect of monomers on the formulation of polymeric nanocapsules based on polyureas and polyamides. Int. J. Pharm. 335(1–2):176–179 (2007). doi:10.1016/j.ijpharm.2006.11.011.

    PubMed  CAS  Google Scholar 

  133. K. Bouchemal, F. Couenne, S. Briançon, H. Fessi, and M. Tayakout. Polyamides nanocapsules: modelling and wall thickness estimation. AIChE J. 52(6):1–10 (2006).

    Google Scholar 

  134. H. Fessi, F. Puisieux, J.-P. Devissaguet, N. Ammoury, and S. Benita. Nanocapsule formation by interfacial deposition following solvent displacement. Int. J. Pharm. 55:R1–R4 (1989). doi:10.1016/0378-5173(89)90281-0.

    CAS  Google Scholar 

  135. R. A. Jain. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 21:2475–2490 (2000). doi:10.1016/S0142-9612(00)00115-0.

    PubMed  CAS  Google Scholar 

  136. T. Delair. Colloidal particles: elaboration from preformed polymers. In A. Elaissari (ed.), Colloidal Biomolecules, Biomaterials and Biomedical Applications, Marcel Dekker, New York, 2004, pp. 329–347.

    Google Scholar 

  137. O. Thioune, H. Fessi, J. P. Devissaguet, and F. Puisieux. Preparation of pseudolatex by nanoprecipitation: Influence of the solvent nature on intrinsic viscosity and interaction constant. Int. J. Pharm. 146:233–238 (1997). doi:10.1016/S0378-5173(96)04830-2.

    CAS  Google Scholar 

  138. P. Legrand, S. Lesieur, A. Bochot, R. Gref, W. Raatjes, G. Barratt, and C. Vauthier. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int. J. Pharm. 344:33–43 (2007). doi:10.1016/j.ijpharm.2007.05.054.

    PubMed  CAS  Google Scholar 

  139. H. Murakami, M. Kobayashi, H. Takeuchi, and Y. Kawashima. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int. J. Pharm. 187(2):143–152 (1999). doi:10.1016/S0378-5173(99)00187-8.

    PubMed  CAS  Google Scholar 

  140. M. T. Peracchia, C. Vauthier, D. Desmaël, A. Gulik, J. C. Dedieu, M. Demoy, J. D’Angelo, and P. Couvreur. Pegylated nanoparticles from a novel methoxypolyethyleneglycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer. Pharm. Res. 15:550–556 (1998). doi:10.1023/A:1011973625803.

    PubMed  CAS  Google Scholar 

  141. C. Duclairoir, E. Nakache, H. Marchais, and A. M. Orecchioni. Formation of gliadin nanoparticles: influence of the solubility parameter of the protein solvent. Colloid Polym. Sci. 276:321–327 (1998). doi:10.1007/s003960050246.

    CAS  Google Scholar 

  142. M. Skiba, D. Wouessidjewe, F. Puisieux, D. Duchène, and A. Gulik. Characterization of amphiphilic fl-cyclodextrin nanospheres. Int. J. Pharm. 142:121–124 (1996). doi:10.1016/0378-5173(96)04653-4.

    CAS  Google Scholar 

  143. H. Lannibois-Drean. Des molécules hydrophobes dans l’eau: fabrication de nanoparticles par precipitation. Ph.D. Université Pierre et Marie Curie, Paris, France (1995).

  144. H. Lannibois, A. Hasmy, R. Botet, O. Aguerre Chariol, and B. Cabane. Surfactant limited aggregation of hydrophobic molecules in water. J. Phys. II. 7:319–342 (1997). doi:10.1051/jp2:1997128.

    CAS  Google Scholar 

  145. T. Niwa, T. Takeuchi, T. Hino, N. Kunou, and Y. Kawashima. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d,llactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior. J. Control. Release. 25:89–98 (1993). doi:10.1016/0168-3659(93)90097-O.

    CAS  Google Scholar 

  146. H. Murakami, M. Kobayashi, H. Takeuchi, and Y. Kawashima. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technol. 107:137–143 (2000).

    CAS  Google Scholar 

  147. L. Peltonen, J. Anitta, S. Hyvönen, M. Kajalainen, and J. Hirvonen. Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(l)lactide nanoparticles. AAPS PharmSciTech. 5(1):1–6 (2004). doi:10.1007/BF02830584.

    Google Scholar 

  148. I. Limayem, C. Charcosset, and H. Fessi. Purification of nanoparticle suspensions by a concentration/diafiltration process. Sep. Purif. Technol. 38:1–9 (2004). doi:10.1016/j.seppur.2003.10.002.

    CAS  Google Scholar 

  149. F. Némati, C. Dubernet, H. Fessi, A. C. Verdière, M. F. Poupon, F. Puisieux, and P. Couvreur. Reversion of multidrug resistance using nanoparticles in vitro: influence of the nature of the polymer. Int. J. Pharm. 138:237–246 (1996). doi:10.1016/0378-5173(96)04559-0.

    Google Scholar 

  150. U. Bilati, E. Allémann, and E. Doelker. Nanoprecipitation Versus Emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech. 6(4):E594–E604 (2005). doi:10.1208/pt060474.

    PubMed  Google Scholar 

  151. J. M. Barichello, M. Morishita, K. Takayama, and T. Nagai. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug. Dev. Ind. Pharm. 25:471–476 (1999). doi:10.1081/DDC-100102197.

    PubMed  CAS  Google Scholar 

  152. J. Molpeceres, M. Guzman, M. R. Aberturas, M. Chacon, and L. Berges. Application of central composite design to the preparation of polycaprolactone nanoparticles by solvent displacement. J. Pharm. Sci. 85:206–13 (1996). doi:10.1021/js950164r.

    PubMed  CAS  Google Scholar 

  153. Y. Zhang, and R.-X. Zhuo. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials. 26:6736–6742 (2005). doi:10.1016/j.biomaterials.2005.03.045.

    PubMed  CAS  Google Scholar 

  154. P. Arbós, M. A. Campanero, M. A. Arangoa, M. J. Renedo, and J. M. Irache. Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties. J. Control Release. 89:19–30 (2003). doi:10.1016/S0168-3659(03)00066-X.

    PubMed  Google Scholar 

  155. M. Skiba, C. Morvan, D. Duchene, F. Puisieux, and D. Wouessidjewe. Evaluation of gastrointestinal behaviour in the rat of amphiphilic β-cyclodextrin nanocapsules, loaded with indomethacin. Int. J. Pharm. 126:275–279 (1995). doi:10.1016/0378-5173(95)04121-4.

    CAS  Google Scholar 

  156. E. Lemos-Senna, D. Wouessidjewe, S. Lesieur, F. Puisieux, G. Couarraze, and D. Duchêne. Evaluation of the hydrophobic drug loading characteristics in nanoprecipitated amphiphilic cyclodextrin nanospheres. Pharm. Dev. Technol. 3(1):85–94 (1998). doi:10.3109/10837459809028482.

    PubMed  CAS  Google Scholar 

  157. E. Lemos-Senna, D. Wouessidjewe, S. Lesieur, and D. Duchêne. Preparation of amphiphilic cyclodextrin nanospheres using the emulsification solvent evaporation method. Influence of the surfactant on preparation and hydrophobic drug loading. Int. J. Pharm. 170:119–128 (1998). doi:10.1016/S0378-5173(98)00147-1.

    CAS  Google Scholar 

  158. K. A. Howard, and J. Kjems. Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert. Opin. Biol. Ther. 7(12):1811–1822 (2007). doi:10.1517/14712598.7.12.1811.

    PubMed  CAS  Google Scholar 

  159. M. Rajaonarivony, C. Vauthier, G. Couarraze, F. Puisieux, and P. Couvreur. Development of a new drug carrier made from alginate. J. Pharm. Sci. 82:912–918 (1993). doi:10.1002/jps.2600820909.

    PubMed  CAS  Google Scholar 

  160. C. Schatz, A. Domard, C. Viton, C. Pichot, and T. Delair. Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules. 5(5):1882–1892 (2004). doi:10.1021/bm049786+.

    PubMed  CAS  Google Scholar 

  161. A. Drogoz, L. David, C. Rochas, A. Domard, and T. Delair. Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring. Langmuir. 23(22):10950–10958 (2007). doi:10.1021/la7008545.

    PubMed  CAS  Google Scholar 

  162. A. Drogoz, S. Munier, B. Verrier, L. David, A. Domard, and T. Delair. Towards biocompatible vaccine delivery systems: interactions of colloidal PECs based on polysaccharides with HIV-1 p24 antigen. Biomacromolecules. 9(2):583–591 (2008). doi:10.1021/bm701154h.

    PubMed  CAS  Google Scholar 

  163. R. Gref, C. Amiel, K. Molinard, S. Daoud-Mahammed, B. Sébille, B. Gillet c, J-C. Beloeil, C. Ringard, V. Rosilio, J. Poupaert, and P. Couvreur. New self-assembled nanogels based on host–guest interactions: Characterization and drug loading. J. Control. Release. 111:316–324 (2006). doi:10.1016/j.jconrel.2005.12.025.

    PubMed  CAS  Google Scholar 

  164. S. Daoud-Mahammed, C. Ringard-Lefebvre, N. Razzouq, V. Rosilio, B. Gillet, P. Couvreur, C. Amiel, and R. Gref. Spontaneous association of hydrophobized dextran and poly-β-cyclodextrin into nanoassemblies. Formation and interaction with a hydrophobic drug. J. Colloid Interface Sci. 307(1):83–93 (2007). doi:10.1016/j.jcis.2006.10.072.

    PubMed  CAS  Google Scholar 

  165. S. De, and D. Robinson. Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J. Control. Release. 89(1):101–12 (2003). doi:10.1016/S0168-3659(03)00098-1.

    PubMed  CAS  Google Scholar 

  166. K. L. Douglas, and M. Tabrizian. Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. J. Biomater. Sci. Polym. E. 16(1):43–56 (2005). doi:10.1163/1568562052843339.

    CAS  Google Scholar 

  167. B. Sarmento, A. J. Ribeiro, F. Veiga, D. C. Ferreira, and R. J. Neufeld. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci. Nanotechnol. 7(8):2833–2841 (2007). doi:10.1166/jnn.2007.609.

    PubMed  CAS  Google Scholar 

  168. I. Aynié. Vectorisation d’oligonucleotides antisens par des nanoparticules d’alginate. Ph.D. Université Paris Sud-11. 01 February 1999.

  169. I. Aynié, C. Vauthier, H. Chacun, E. Fattal, and P. Couvreur. Sponge-like alginate nanoparticles as a new system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 9:301–312 (1999).

    PubMed  Google Scholar 

  170. M. González Ferreiro, L. Tillman, G. Hardee, and R. Bodmeier. Characterization of alginate/poly-L-lysine particles as antisense oligonucleotide carriers. Int. J. Pharm. 239(1–2):47–59 (2002). doi:10.1016/S0378-5173(02)00030-3.

    PubMed  Google Scholar 

  171. P. Calvo, C. Remuñan-Lopez, J. L. Vila-Jato, and M. J. Alonso. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 14:1431–1436 (1997). doi:10.1023/A:1012128907225.

    PubMed  CAS  Google Scholar 

  172. P. Calvo, C. Remuñan-Lopez, J. L. Vila-Jato, and M. J. Alonso. Novel hydrophilic chitosan-polyethylene ocide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63:125–132 (1997). doi:10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.

    CAS  Google Scholar 

  173. T. López-León, E. L. Carvalho, B. Seijo, J. L. Ortega-Vinuesa, and D. Bastos-González. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J. Colloid Interf. Sci. 283(2):344–351 (2005). doi:10.1016/j.jcis.2004.08.186.

    Google Scholar 

  174. R. Fernández-Urrusuno, P. Calvo, C. Remuñán-López, J. L. Vila-Jato, and M. J. Alonso. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res. 16(10):1576–1581 (1999). doi:10.1023/A:1018908705446.

    PubMed  Google Scholar 

  175. M. Cetin, Y. Aktas, I. Vural, Y. Capan, L.A. Dogan, M. Duman, and T. Dalkara. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug. Deliv. 14(8):525–529 (2007). doi:10.1080/10717540701606483.

    PubMed  CAS  Google Scholar 

  176. K. A. Janes, P. Calvo, and M. J. Alonso. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 47(1):83–97 (2001). doi:10.1016/S0169-409X(00)00123-X.

    PubMed  CAS  Google Scholar 

  177. H. Kastar, and H. O. Alpar. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release. 115(2):216–225 (2006). doi:10.1016/j.jconrel.2006.07.021.

    Google Scholar 

  178. T. H. Dung, S. R. Lee, S. D. Han, S. J. Kim, Y. M. Ju, M. S. Kim, and H. Yoo. Chitosan-TPP nanoparticle as a release system of antisense oligonucleotide in the oral environment. J. Nanosci. Nanotechnol. 7(11):3695–3699 (2007). doi:10.1166/jnn.2007.041.

    PubMed  CAS  Google Scholar 

  179. C. Pegro, D. Torres, and M. J. Alonso. The potential of chitosan for the oral administration of peptides. Expert. Opin. Drug. Deliv. 2(5):843–854 (2005). doi:10.1517/17425247.2.5.843.

    Google Scholar 

  180. N. Csaba, M. Garcia-Fuentes, and M. J. Alonso. The performance of nanocarriers for transmucosal drug delivery. Expert. Opin. Drug. Deliv. 3(4):463–478 (2006). doi:10.1517/17425247.3.4.463.

    PubMed  CAS  Google Scholar 

  181. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Nanomedicine: current status and future prospects. FASEB J. 19:311–330 (2005). doi:10.1096/fj.04-2747rev.

    PubMed  CAS  Google Scholar 

  182. A. Vonabourg, C. Passirani, P. Saulnier, and J. P. Benoit. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 27:4356–4373 (2006). doi:10.1016/j.biomaterials.2006.03.039.

    Google Scholar 

  183. L. Nobs, F. Buchegger, R. Gurny, and E. Allemann. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting. Eur. J. Pharm. Biopharm. 58(3):483–490 (2004). doi:10.1016/j.ejpb.2004.04.006.

    PubMed  CAS  Google Scholar 

  184. L. Nobs, F. Buchegger, R. Gurny, and E. Allemann. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93(8):1980–1992 (2004). doi:10.1002/jps.20098.

    PubMed  CAS  Google Scholar 

  185. B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaële, J. Hoebeke, M. Renoir, J. D’Angelo, L. Cattel, and P. Couvreur. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89(11):1452–1464 (2000). doi:10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P.

    PubMed  CAS  Google Scholar 

  186. Y. De Kozak, K. Andrieux, H. Villarroya, C. Klein, B. Thillaye-Goldenberg, M. C. Naud, E. Garcia, and P. Couvreur. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur. J. Immunol. 34(12):3702–3712 (2004). doi:10.1002/eji.200425022.

    PubMed  Google Scholar 

  187. D. W. Barlet, and M. E. Davis. Physicochemical and biological characterization of targeted nucleic acid-containing nanoparticles. Bioconjug. Chem. 18:456–468 (2007). doi:10.1021/bc0603539.

    Google Scholar 

  188. R. Gref, P. Couvreur, G. Barratt, and E. Mysiakine. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials. 24(24):4529–4537 (2003). doi:10.1016/S0142-9612(03)00348-X.

    PubMed  CAS  Google Scholar 

  189. L. Illum, L. O. Jacobsen, R. H. Müller, R. Mak, and S. S. Davis. Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages. Biomaterials. 8:113–117 (1987). doi:10.1016/0142-9612(87)90099-8.

    PubMed  CAS  Google Scholar 

  190. P. Calvo, B. Gouritin, H. Chacun, D. Desmaële, J. D’Angelo, J. P. Noel, G. Georgin, E. Fattal, J. P. Andreux, and P. Couvreur. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm. Res. 18(8):1157–1166 (2001). doi:10.1023/A:1010931127745.

    PubMed  CAS  Google Scholar 

  191. J. Kreuter. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J. Nanosci. Nanotechnol. 4:484–488 (2004). doi:10.1166/jnn.2003.077.

    PubMed  CAS  Google Scholar 

  192. L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere, and P. Speiser. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int. J. Pharm. 15:335–345 (1983). doi:10.1016/0378-5173(83)90166-7.

    CAS  Google Scholar 

  193. A. Béduneau, P. Saulnier, and J. P. Benoit. Active targeting of brain tumors using nanocarriers. Biomaterials. 28(33):4947–4967 (2007). doi:10.1016/j.biomaterials.2007.06.011.

    PubMed  Google Scholar 

  194. I. Bertholon, G. Ponchel, D. Labarre, P. Couvreur, and C. Vauthier. Bioadhesive properties of poly(alkylcyanoacrylate) nanoparticles coated with polysaccharide. J. Nanosci. Nanotechnol. 6(9–10):3102–3109 (2006). doi:10.1166/jnn.2006.418.

    PubMed  CAS  Google Scholar 

  195. K. Albrecht, and A. Bernkop-Schnürch. Thiomers: forms, functions and applications to nanomedicine. Nanomedicine. 2(1):41–50 (2007). doi:10.2217/17435889.2.1.41.

    PubMed  CAS  Google Scholar 

  196. K. Bouchemal. New challenges for pharmaceutical formulations and drug delivery systems characterization using isothermal titration calorimetry. Drug Discov. Today. 13(21–22):960–972 (2008). doi:10.1016/j.drudis.2008.06.004.

    PubMed  CAS  Google Scholar 

  197. M. E. Martinez-Barbosa, L. Bouteiller, S. Cammas-Marion, V. Montembault, L. Fontaine, and G. Ponchel. Synthesis and ITC characterization of novel nanoparticles constituted by poly(gamma-benzyl L-glutamate)-beta-cyclodextrin. J. Mol. Recognit. 21(3):169–178 (2008). doi:10.1002/jmr.882.

    Google Scholar 

  198. Y. Aktaş, M. Yemisci, K. Andrieux, R. N. Gürsoy, M. J. Alonso, E. Fernandez-Megia, R. Novoa-Carballal, E. Quiñoá, R. Riguera, M. F. Sargon, H. H. Celik, A. S. Demir, A. A. Hincal, T. Dalkara, Y. Capan, and P. Couvreur. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug. Chem. 16(6):1503–1511 (2005). doi:10.1021/bc050217o.

    PubMed  Google Scholar 

  199. Bioalliance Pharma: Doxorubicin Transdrug®: Phase II/III http://www.bioalliancepharma.com Assessed 28 August 2008.

  200. M. J. Hawkins, P. Soon-Shiong, and N. Desai. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug. Deliv. Rev. 60:876–885 (2008). doi:10.1016/j.addr.2007.08.044.

    PubMed  CAS  Google Scholar 

  201. A. P. Colombo, S. Briancon, J. Lieto, and H. Fessi. Project, design and use of a pilot plant for nanocapsule production. Drug. Dev. Ind. Pharm. 27(10):1063–1072 (2001). doi:10.1081/DDC-100108369.

    PubMed  CAS  Google Scholar 

  202. S. A. Galindo-Rodriguez, F. Puel, S. Briançon, E. Allémann, E. Doelker, and H. Fessi. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur. J. Pharm. Sci. 25:357–367 (2005). doi:10.1016/j.ejps.2005.03.013.

    PubMed  CAS  Google Scholar 

  203. S. Briançon, H. Fessi, F. Lecomte, and J. Lieto. Study of an original production process of nanoparticles by precipitation, second ed. European Congress of Chemical Engineering, Montpellier, France (1999).

  204. P. Tewa-Tagne, S. Briançon, and H. Fessi. Preparation of redispersible dry nanocapsules by means of spray-drying: development and characterisation. Eur. J. Pharm. Sci. 30:124–135 (2007). doi:10.1016/j.ejps.2006.10.006.

    PubMed  CAS  Google Scholar 

  205. S. Watnasirichaikul, T. Rades, I. G. Tucker, and N. M. Davies. In-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsion. J. Pharm. Pharmacol. 54:473–480 (2002). doi:10.1211/0022357021778736.

    PubMed  CAS  Google Scholar 

  206. T. Govender, S. Stolnik, M. C. Garnett, L. Illum, and S. S. Davis. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release. 57:171–185 (1999). doi:10.1016/S0168-3659(98)00116-3.

    PubMed  CAS  Google Scholar 

  207. S. K. Sahoo, J. Panyam, S. Prabha, and V. Labhasetwar. Residual polyvinyl alcohol associated with poly (DL,-lactide-coglycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release. 82:105–114 (2002). doi:10.1016/S0168-3659(02)00127-X.

    PubMed  CAS  Google Scholar 

  208. C. A. Nguyen, E. Allemann, G. Schwach, E. Doelker, and R. Gurny. Synthesis of a novel fluorescent poly (DL,-lactide) endcapped with 1-pyrenebutanol used for the preparation of nanoparticles. Eur. J. Pharm. Sci. 20:217–222 (2003). doi:10.1016/S0928-0987(03)00196-9.

    PubMed  CAS  Google Scholar 

  209. I. Bravo-Osuna, T. Schmitz, A. Bernkop-Schnürch, C. Vauthier, and G. Ponchel. Elaboration and characterization of thiolated chitosan-coated acrylic nanoparticles. Int. J. Pharm. 316:170–175 (2006). doi:10.1016/j.ijpharm.2006.02.037.

    PubMed  CAS  Google Scholar 

  210. P. Beck, D. Scherer, and J. Kreuter. Separation of drug-loaded nanoparticles from free drug by gel filtration. J. Microencapsul. 7:491–496 (1990). doi:10.3109/02652049009040471.

    PubMed  CAS  Google Scholar 

  211. J. Zahka, and L. Mir. Ultrafiltration of latex emulsions. Chem. Eng. Prog. 73:53–55 (1977).

    CAS  Google Scholar 

  212. G. Tishchenko, K. Luetzow, J. Schauer, W. Albrecht, and M. Bleha. Purification of polymer nanoparticles by diafiltration with polysulfone/hydrophilic polymer blend membranes. Sep. Purif. Technol. 22–23:403–415 (2001). doi:10.1016/S1383-5866(00)00177-5.

    Google Scholar 

  213. G. Tishchenko, R. Hilke, W. Albrecht, J. Schauer, K. Luetzow, Z. Pientka, and M. Bleha. Ultrafiltration and microfiltration membranes in latex purification by diafiltration with suction. Sep. Purif. Technol. 30:57–68 (2003). doi:10.1016/S1383-5866(02)00120-X.

    CAS  Google Scholar 

  214. M. T. Peracchia, C. Vauthier, F. Puisieux, and P. Couvreur. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J. Biomed. Mater. Res. 34(3):317–326 (1997). doi:10.1002/(SICI)1097-4636(19970305)34:3<317::AID-JBM6>3.0.CO;2-N.

    PubMed  CAS  Google Scholar 

  215. U. B. Kompella, N. Bandi, and S. P. Ayalasomayajula. Poly (lactic acid) nanoparticles for sustained release of budesonide. Drug Deliv. Technol. 1:1–7 (2001).

    Google Scholar 

  216. S. Prabha, W. -Z. Zhou, J. Panyam, and V. Labhasetwar. Size dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm. 244:105–115 (2002). doi:10.1016/S0378-5173(02)00315-0.

    PubMed  CAS  Google Scholar 

  217. S. Dreis, F. Rothweiler, M. Michaelis, J. Cinatl Jr, J. Kreuter, and K. Langer. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int. J. Pharm. 341(1–2):207–214 (2007). doi:10.1016/j.ijpharm.2007.03.036.

    PubMed  CAS  Google Scholar 

  218. M. Hamoudeh, A. Al Faraj, E. Canet-Soulas, F. Bessueille, D. Léonard, and H. Fessi. Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int. J. Pharm. 338(1–2):248–257 (2007). doi:10.1016/j.ijpharm.2007.01.023.

    PubMed  CAS  Google Scholar 

  219. H. Pinto-Alphandary, O. Balland, and P. Couvreur. A new method to isolate poly(alkylcyanoacrylate) nanoparticle preparations. J. Drug. Target. 3:167–169 (1995). doi:10.3109/10611869509059216.

    PubMed  CAS  Google Scholar 

  220. E. Chiellini, L. M. Orsini, and R. Solaro. Polymeric nanoparticles based on polylactide and related co-polymers. Macromol. Symp. 197:345–354 (2003). doi:10.1002/masy.200350730.

    CAS  Google Scholar 

  221. K. Bouchemal, G. Ponchel, S. Mazzaferro, V.-H. Campos-Requena, C. Gueutin, G.-F. Palmieri, and C. Vauthier. A new approach to determine loading efficiency of Leu-enkephalin in poly(isobutylcyanoacrylate) nanoparticles coated with thiolated chitosan. J. Drug. Del. Sci. Tech. 22(12):2152–2162 (2008).

    Google Scholar 

  222. G. Dalwadi, H. A. Benson, and Y. Chen. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm. Res. 22(12):2152–2162 (2005). doi:10.1007/s11095-005-7781-z.

    PubMed  CAS  Google Scholar 

  223. P. Harmant, and P. Aimar. Materials, Interfaces and Electrochemical Phenomena coagulation of colloids retained by porous wall. AIChE J. 42:3523 (1996).

    CAS  Google Scholar 

  224. S. S. Madaeni, and A. G. Fane. Microfiltration of very dilute colloidal mixtures. J. Membr. Sci. 113:301–312 (1996). doi:10.1016/0376-7388(95)00129-8.

    CAS  Google Scholar 

  225. J. Rollot, P. Couvreur, L. Roblot-Treupel, and F. Puisieux. Physicochemical and morphological characterization of polyisobutylcyanoacrylate nanocapsules. J. Pharm. Sci. 75:361–364 (1986). doi:10.1002/jps.2600750408.

    PubMed  CAS  Google Scholar 

  226. V. Masson, F. Maurin, H. Fessi, and J. P. Devissaguet. Influence of sterilization processes on poly(ε-caprolactone) nanospheres. Biomaterials. 18:327–335 (1997). doi:10.1016/S0142-9612(96)00144-5.

    PubMed  CAS  Google Scholar 

  227. P. Sommerfeld, U. Schroeder, and B. A. Sabel. Sterilization of unloaded polybutylcyanoacrylate nanoparticles. Int. J. Pharm. 164:113–118 (1998). doi:10.1016/S0378-5173(97)00394-3.

    CAS  Google Scholar 

  228. G. W. Bos, A. Trullas-Jimeno, W. Jiskoot, D. J. A. Crommelin, and W. E. Hennink. Sterilization of poly(dimethylamino) ethyl methacrylate-based gene transfer complexes. Int. J. Pharm. 211:79–88 (2000). doi:10.1016/S0378-5173(00)00593-7.

    PubMed  CAS  Google Scholar 

  229. C. Boess, and K. W. Bögl. Influence of radiation treatment on pharmaceuticals—a review: alkaloids, morphine derivatives and antibiotics. Drug. Dev. Ind. Pharm. 22(6):495–529 (1996). doi:10.3109/03639049609108354.

    CAS  Google Scholar 

  230. M. B. Sintzel, A. Merklia, C. Tabatabay, and R. Gurny. Influence of irradiation sterilization on polymers used as drug carriers : A review. Drug. Dev. Ind. Pharm. 23(9):857–878 (1997). doi:10.3109/03639049709148693.

    CAS  Google Scholar 

  231. K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 17:93–102 (1996). doi:10.1016/0142-9612(96)85754-1.

    PubMed  CAS  Google Scholar 

  232. O. Maksimenko, E. Pavlov, E. Toushov, A. Molin, Y. Stukalov, T. Prudskova, V. Feldman, J. Kreuter, and S. Gelperina. Radiation sterilisation of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles. Int. J. Pharm. 356(1–2):325–332 (2008). doi:10.1016/j.ijpharm.2008.01.010.

    PubMed  CAS  Google Scholar 

  233. E. Memisoglu-Bilensoy, and A. A. Hincal. Sterile, injectable cyclodextrin nanoparticles: Effects of gamma irradiation and autoclaving. Int. J. Pharm. 311:203–208 (2006). doi:10.1016/j.ijpharm.2005.12.013.

    PubMed  CAS  Google Scholar 

  234. B. Magenheim, and S. Benita. Nanoparticle characterization: a comprehensive physicochemical approach. STP Pharma. Sci. 1:221–241 (1991).

    CAS  Google Scholar 

  235. I. Brigger, L. Armand-Lefevre, P. Chaminade, M. Besnard, Y. Rigaldie, A. Largeteau, A. Andremont, L. Grislain, G. Demazeau, and P. Couvreur. The stenlying effect of high hydrostatic pressure on thermally and hydrolytically labile nanosized carriers. Pharm Res. 20(4):674–683 (2003). doi:10.1023/A:1023267304096.

    PubMed  CAS  Google Scholar 

  236. F. Nemati, G. N. Cavé, and P. Couvreur. Lyophilization of substances with low water permeability by a modification of crystallized structures during Freezing. Proceedings of the 6th International Congress of Pharmaceutical Technology Assoc. Pharm. Galénique Ind., Châtenay Malabry, APGI, Paris-France. (3):487–493 (1992).

  237. S. De Chasteigner, H. Fessi, G. Cavé, J. P. Devissaguet, and F. Puisieux. gastro-intestinal tolerance study of a freeze-dried oral dosage form of indomethacin-loaded nanocapsules. S.T.P. Pharma Sci. 5:242–246 (1995).

    CAS  Google Scholar 

  238. S. De Chasteigner, G. Cavé, H. Fessi, J. P. Devissaguet, and F. Puisieux. Freeze-drying of Itraconazole-loaded nanosphere suspensions : a feasibility study. Drug. Dev. Res. 38:116–124 (1996). doi:10.1002/(SICI)1098-2299(199606)38:2<116::AID-DDR6>3.0.CO;2-M.

    Google Scholar 

  239. M. Auvillain, G. Cavé, H. Fessi, and J. P. Devissaguet. Lyophilisation de vecteurs colloïdaux submicroniques. STP Pharma. Sci. 5:738–744 (1989).

    CAS  Google Scholar 

  240. W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug. Deliv. Rev. 58:1688–1713 (2006). doi:10.1016/j.addr.2006.09.017.

    PubMed  CAS  Google Scholar 

  241. W. Abdelwahed, G. Degobert, and H. Fessi. Freeze-drying of nanocapsules: Impact of annealing on the drying process. Int. J. Pharm. 324:74–82 (2006). doi:10.1016/j.ijpharm.2006.06.047.

    PubMed  CAS  Google Scholar 

  242. P. Tewa-Tagne, S. Briançon, and H. Fessi. Spray-dried microparticles containing polymeric nanocapsules: Formulation aspects, liquid phase interactions and particles characteristics. Int. J. Pharm. 325:63–74 (2006). doi:10.1016/j.ijpharm.2006.06.025.

    PubMed  CAS  Google Scholar 

  243. A. M. Layre, P. Couvreur, J. Richard, D. Requier, N. E. Ghermani, and R. Gref. Freeze-drying of composite core-shell nanoparticles. Drug. Dev. Ind. Pharm. 32(7):839–846 (2006). doi:10.1080/03639040600685134.

    PubMed  CAS  Google Scholar 

  244. F. De Jaeghere, E. Allémann, J. -C. Leroux, W. Stevels, J. Feijen, E. Doelker, and R. Gurny. Formulation and lyoprotection of poly (Lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm. Res. 16:859–866 (1999). doi:10.1023/A:1018826103261.

    PubMed  Google Scholar 

  245. M. Sameti, G. Bohr, M. N. V. Ravi Kumar, C. Kneuer, U. Bakowsky, M. Nacken, H. Schmidt, and C. -M. Lehr. Stabilization by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int. J. Pharm. 266:51–60 (2003). doi:10.1016/S0378-5173(03)00380-6.

    PubMed  CAS  Google Scholar 

  246. W. Abdelwahed, G. Degobert, and H. Fessi. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): Formulation and process optimization. Int J Pharm. 309:178–188 (2006). doi:10.1016/j.ijpharm.2005.10.003.

    PubMed  CAS  Google Scholar 

  247. B. Seijo, E. Fattal, L. Roblot-Treupel, and P. Couvreur. Design of nanoparticles of less than 50 nm diameter: preparation, characterization and drug loading. Int. J. Pharm. 62:1–7 (1990). doi:10.1016/0378-5173(90)90024-X.

    CAS  Google Scholar 

  248. T. W. Patapoff, and D. E. Overcashier. The importance of freezing on lyophilization cycle development. Biopharm. 3:16–21 (2002).

    Google Scholar 

  249. W. Abdelwahed, G. Degobert, and H. Fessi. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur. J. Pharm Biopharm. 63:87–94 (2006). doi:10.1016/j.ejpb.2006.01.015.

    PubMed  CAS  Google Scholar 

  250. J. Broadhead, S. K. Edmond Rouan, and C. T. Rhodes. The spray drying of pharmaceuticals. Drug. Dev. Ind. Pharm. 18:1169–1206 (1992). doi:10.3109/03639049209046327.

    CAS  Google Scholar 

  251. M. Adler, M. Unger, and G. Lee. Surface composition of spray-dried particles of bovine serum albumin/trehalose/surfactant. Pharm. Res. 17:863–870 (2000). doi:10.1023/A:1007568511399.

    PubMed  CAS  Google Scholar 

  252. C. R. Müller, V. L. Bassani, A. R. Pohlmann, C. B. Michalowski, P. R. Petrovick, and S. S. Guterres. Preparation and characterization of spray-dried nanocapsules. Drug. Dev. Ind. Pharm. 26:343–347 (2000). doi:10.1081/DDC-100100363.

    PubMed  Google Scholar 

  253. K. Master. Spray Drying Handbook. Longman Scientific and Technical, New York, 1991.

    Google Scholar 

  254. S. Bozdag, K. Dillen, J. Vandervoort, and A. Ludwig. The effect of freeze drying with cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactideglycolide) nanoparticles. J. Pharm. Pharmacol. 57:699–707 (2005). doi:10.1211/0022357056145.

    PubMed  CAS  Google Scholar 

  255. C. Vauthier, B. Cabane, and D. Labarre. How to concentrate nanoparticles and avoid aggregation ? Eur. J. Pharm. Biopharm. 69:466–475 (2008). doi:10.1016/j.ejpb.2008.01.025.

    PubMed  CAS  Google Scholar 

  256. F. Cournarie, M. Chéron, M. Besnard, and C. Vauthier. Evidence for restrictive parameters in formulation of insulin-loaded nanocapsules. Eur. J. Pharm. Biopharm. 57(2):171–179 (2004). doi:10.1016/S0939-6411(03)00191-7.

    PubMed  CAS  Google Scholar 

  257. D. V. Bazile, C. Ropert, P. Huve, T. Verracchia, M. Marlard, A. Frydman, M. Veillard, and G. Spenlehauer. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials. 13(15):1093–1102 (1992). doi:10.1016/0142-9612(92)90142-B.

    PubMed  CAS  Google Scholar 

  258. M. T. Peracchia, E. Fattal, D. Desmaële, M. Besnard, J. P. Noël, J. M. Gomis, M. Appel, J. d’Angelo, and P. Couvreur. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J. Control. Release. 60(1):121–128 (1999). doi:10.1016/S0168-3659(99)00063-2.

    PubMed  CAS  Google Scholar 

  259. H. Pinto-Alphandary, M. Aboubakar, D. Jaillard, P. Couvreur, and C. Vauthier. Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm. Res. 20(7):1071–1084 (2003). doi:10.1023/A:1024470508758.

    PubMed  CAS  Google Scholar 

  260. B. Weiss, U. F. Schaefer, J. Zapp, A. Lamprecht, A. Stallmach, and C. M. Lehr. Nanoparticles made of fluorescence-labelled poly(L-lactide-co-glycolide): preparation, stability and biocompatibility. J. Nanosci. Nanotechnol. 6(9–10):3048–3056 (2006). doi:10.1166/jnn.2006.424.

    PubMed  CAS  Google Scholar 

  261. M. A. Pereira, V. C. Mosqueira, J. M. Vilela, M. S. Andrade, G. A. Ramaldes, and V. N. Cardose. PLA-PEG nanocapsules radiolabelled with 99 m Technitium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy. Eur. J. Pharm. Sci. 33:42–51 (2008).

    PubMed  CAS  Google Scholar 

  262. M. Simeonova, T. Ivanova, Z. Raikov, and H. Konstantinov. Tissue distribution of polybutylcyanoacrylate nanoparticles loaded with spin-labelled nitrosourea in Lewis lung carcinoma-bearing mice. Acta Physiol. Pharmacol. Bulg. 20(3–4):77–82 (1994).

    PubMed  CAS  Google Scholar 

  263. M. Tobio, A. Sanchez, A. Vila, I. I. Soriano, C. Evora, J. L. Vila-Jato, and M. J. Alonso. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf. B. Biointerfaces. 18(3–4):315–323 (2000). doi:10.1016/S0927-7765(99)00157-5.

    PubMed  CAS  Google Scholar 

  264. P. Prabu, A. A Chaudhari, N. Dharmaraj, M. S. Khil, S. Y. Park, and H. Y. Kim. Preparation, characterization, in-vitro drug release and cellular uptake of poly(caprolactone) grafted dextran copolymeric nanoparticles loaded with anticancer drug. J. Biomed. Mater. Res: A. (2008). [doi:10.1002/jbm.a.32163]

  265. G. Sun, A. Hagooly, J. Xu, A. M. Nyström, Z. Li, R. Rossin, D. A. Moore, K. L. Wooley, and M. L. Welch. Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell cross-linked nanoparticles. Biomacromolecules. 9(7):1997–2006 (2008). doi:10.1021/bm800246x.

    PubMed  CAS  Google Scholar 

  266. S. Ponsart, J. Coudane, J. L. Morgat, and M. Vert. Synthesis of [3H]-labeled poly(ε-caprolactone). J. Labelled Compd Rad. 43:271–281 (2000).

    CAS  Google Scholar 

  267. S. Ponsart, J. Coudane, J. L. Morgat, and M. Vert. Synthesis of [3H] and fluorescence-labeled poly(lactide). J. Labelled Compd Rad. 44(10):677–687 (2001).

    CAS  Google Scholar 

  268. S. Ponsart, J. Coudane, B. Saulnier, J. L. Morgat, and M. Vert. Biodegradation of [(3)H]poly(ε-caprolactone) in the presence of active sludge extracts. Biomacromolecules. 2(2):373–377 (2001). doi:10.1021/bm015549k.

    PubMed  CAS  Google Scholar 

  269. I. Bertholon, H. Hommel, D. Labarre, and C. Vauthier. Properties of Polysaccharides Grafted on Nanoparticles Investigated by EPR. Langmuir. 22:5485–5490 (2006). doi:10.1021/la060570y.

    PubMed  CAS  Google Scholar 

  270. C. Chauvierre, C. Vauthier, D. Labarre, and H. Hommel. Evaluation of the surface properties of dextran coated poly(isobutylcyanocrylate) nanoparticles by Spin-labelling coupled with electron resonance spectroscopy. Colloid Polym. Sci. 282:1016–1025 (2004). doi:10.1007/s00396-003-1027-6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Vauthier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vauthier, C., Bouchemal, K. Methods for the Preparation and Manufacture of Polymeric Nanoparticles. Pharm Res 26, 1025–1058 (2009). https://doi.org/10.1007/s11095-008-9800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9800-3

KEY WORDS

Navigation