Skip to main content

Advertisement

Log in

Magnetothermally-responsive Nanomaterials: Combining Magnetic Nanostructures and Thermally-Sensitive Polymers for Triggered Drug Release

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

This paper reviews the design and development of magnetothermally-triggered drug delivery systems, whereby magnetic nanoparticles are combined with thermally-activated materials. By combining superparamagnetic nanoparticles with lower critical solution temperature (LCST) polymers, an alternating current (AC) magnetic field can be used to trigger localized heating in vivo, which in turn causes a phase change in the host polymer to allow diffusion and release of drugs. The use of magnetic nanoparticles for biomedical applications is reviewed, as well as the design of thermally-activated polymeric systems. Current research on externally-triggered delivery is highlighted, with a focus on the design and challenges in developing magnetothermally-activated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang. physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2:9–30 (2000). doi:10.1146/annurev.bioeng.2.1.9.

    PubMed  CAS  Google Scholar 

  2. E. R. Edelman, L. Brown, J. Taylor, and R. Langer. In vitro and in vivo kinetics of regulated drug release from polymer matrices by oscillating magnetic fields. J. Biomed. Mater. Res. 21:339–353 (1987). doi:10.1002/jbm.820210307.

    PubMed  CAS  Google Scholar 

  3. E. R. Edelman, and R. Langer. Optimization of release from magnetically controlled polymeric drug release devices. Biomaterials. 14:621–626 (1993). doi:10.1016/0142-9612(93)90182-2.

    PubMed  CAS  Google Scholar 

  4. L. Brannon-Peppas, and J. O. Blanchette. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56:1649–1659 (2000). doi:10.1016/j.addr.2004.02.014.

    Google Scholar 

  5. A. El-Aneed. An overview of current delivery systems in cancer gene therapy. J. Control Release. 94:1–14 (2004). doi:10.1016/j.jconrel.2003.09.013.

    PubMed  CAS  Google Scholar 

  6. Genentech Biooncology. Herceptin: Trastuzumab, www.genentech.com, 2008.

  7. K. L. Ang, S. Venkatraman, and R. V. Ramanujan. Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater. Sci. Eng. 27:347–351 (2007). doi:10.1016/j.msec.2006.05.027.

    CAS  Google Scholar 

  8. S. W. Lee, S. Bae, Y. Takemura, I.-B. Shim, T. M. Kim, J. Kim, H. J. Lee, S. Zurn, and C. S. Kim. Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application. J. Magn. Magn. Mater. 310:2868–2870 (2007). doi:10.1016/j.jmmm.2006.11.080.

    CAS  Google Scholar 

  9. J. K. Yang, J. H. Yu, J. Kim, and Y. H. Choa. Preparation of superparamagnetic nanocomposite particles for hyperthermia therapy application. Mater. Sci. Eng. A. 449–451:477–479 (2007). doi:10.1016/j.msea.2006.02.336.

    Google Scholar 

  10. D. C. F. Chan, D. B. Kirpotin, and P. A. Bunn Jr. Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn Mater. 122:374–378 (1993). doi:10.1016/0304-8853(93)91113-L.

    CAS  Google Scholar 

  11. A. Jordan, R. Scholz, P. Wust, H. Fähling, and R. Felix. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201:413–419 (1999). doi:10.1016/S0304-8853(99)00088-8.

    CAS  Google Scholar 

  12. P. Wust, U. Gneveckow, M. B. Johannsen, D. Ãhmer, T. Henkel, F. Kahmann, J. Sehouli, R. Felix, J. Ricke, and A. Jordan. Magnetic nanoparticles for interstitial thermotherapy—feasibility, tolerance and achieved temperatures. Int. J. Hypertherm. 22:673–685 (2006). doi:10.1080/02656730601106037.

    CAS  Google Scholar 

  13. A. K. Gupta, and M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021 (2005). doi:10.1016/j.biomaterials.2004.10.012.

    PubMed  CAS  Google Scholar 

  14. O. S. Nielsen, M. Horsman, and J. Overgaard. A future for hyperthermia in cancer treatment? Eur. J. Cancer 37:1587–1589 (2001). doi:10.1016/S0959-8049(01)00193-9.

    PubMed  CAS  Google Scholar 

  15. R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrot, and C. B. Taylor. Selective inductive heating of lymph nodes. Ann. Surg. 146:596–606 (1957). doi:10.1097/00000658-195710000-00007.

    PubMed  CAS  Google Scholar 

  16. E. Roux, M. Francis, F. M. Winnik, and J.-C. Leroux. Polymer based pH-sensitive carriers as a means to improve the cytoplasmic delivery of drugs. Int. J. Pharm. 242:25–36 (2002). doi:10.1016/S0378-5173(02)00183-7.

    PubMed  CAS  Google Scholar 

  17. A. Ito, Y. Kuga, H. Honda, H. Kikkawa, A. Horiuchi, Y. Watanabe, and T. Kobayashi. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett. 212:167–175 (2004). doi:10.1016/j.canlet.2004.03.038.

    PubMed  CAS  Google Scholar 

  18. T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021 (2008). doi:10.1016/j.biomaterials.2008.07.004.

    PubMed  CAS  Google Scholar 

  19. National Cancer Institute, www.nano.cancer.gov, 2005.

  20. K. B. Hartman, L. J. Wilson, and M. G. Rosenblum. Detecting and treating cancer with nanotechnology. Mol. Diagn. Ther. 12:1–14 (2008).

    PubMed  CAS  Google Scholar 

  21. E. M. Kolonko, and L. L. Keissling. Polymeric domain that promotes cellular internalization. J. Am. Chem Soc. 130:5626–5627 (2008). doi:10.1021/ja8001716.

    PubMed  CAS  Google Scholar 

  22. N. Murthy, J. Campbell, N. Fausto, A. S. Hoffman, and P. S. Stayton. Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J. Control Release 89:365–374 (2003). doi:10.1016/S0168-3659(03)00099-3.

    PubMed  CAS  Google Scholar 

  23. R. E. Vanden-Broucke, B. G. DeGeest, S. Bonne, M. Vinken, T. Van Haecke, H. Heimberg, E. Wagner, V. Rogiers, S. C. DeSmedt, J. Demeester, and N. N. Sanders. Prolonged gene silencing in hepatoma cells and primary hepatocytes after small interfering RNA delivery with biodegradable poly(beta-amino esters). J. Gene Med. 10:783–794 (2008). doi:10.1002/jgm.1202.

    CAS  Google Scholar 

  24. D. L. Buckley, P. J. Drew, S. Mussurakis, J. R. T. Monson, and A. Horsman. Microvessel density in invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J. Magn. Reson. Imaging 7:461–464 (1997). doi:10.1002/jmri.1880070302.

    PubMed  CAS  Google Scholar 

  25. J. L. Bridot, A. C. Faure, S. Laurent, C. Riviere, C. Billotey, B. Hiba, M. Janier, V. Josserand, J. L. Coll, L. Vander Elst, R. Muller, S. Roux, P. Perriat, and O. Tillement. Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 129:5076–5084 (2007). doi:10.1021/ja068356j.

    PubMed  CAS  Google Scholar 

  26. V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof. In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology 16:1221–1233 (2005). doi:10.1088/0957-4484/16/8/041.

    CAS  Google Scholar 

  27. S. Mornet, F. Vasseur, F. Grasset, and E. Duguet. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14:2161–2175 (2004). doi:10.1039/b402025a.

    CAS  Google Scholar 

  28. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209:171–176 (2004). doi:10.1016/j.canlet.2004.02.004.

    PubMed  CAS  Google Scholar 

  29. S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West. Independent optically addressable nanoparticle-polymer optomechanical composites. Appl. Phys. Lett. 80:4609–4611 (2002). doi:10.1063/1.1481536.

    CAS  Google Scholar 

  30. R. Hergt, W. Andra, C. G. d’Ambly, I. Hilger, W. A. Kaiser, U. Richter, and H. G. Schmidt. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34:3745–3754 (1998). doi:10.1109/20.718537.

    CAS  Google Scholar 

  31. R. E. Rosensweig. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252:370–374 (2002). doi:10.1016/S0304-8853(02)00706-0.

    CAS  Google Scholar 

  32. C. Zhang, D. T. Johnson, and C. S. Brazel. Numerical study on the multi-region bio-heat equation to model Magnetic Fluid Hyperthermia (MFH) using low curie temperature nanoparticles. IEEE Transactions on Nanobioscience in press—VOL (2008) page.

  33. A. Jordan, R. Scholz, P. Wust, H. Fahling, J. Krause, W. Wlodarczyk, B. Sander, T. Vogl, and R. Felix. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int. J. Hypertherm. 13:587–605 (1997). doi:10.3109/02656739709023559.

    CAS  Google Scholar 

  34. V. Simonenko, H. Pageant, D. Fei, and T. C. Ng. In vitro and in vivo monitoring of 5-fluorosytosine metabolism with 19F-NMR spectroscopy after adenoviral transduction of cells with bifunctional yeast CDUPRT fusion gene. Molec. Ther. 9:S230 (2004).

    Google Scholar 

  35. M. Dittgen, M. Durrani, and K. Lehmann. Acrylic polymers—a review of pharmaceutical applications. STP Pharma Sciences 7:403–437 (1997).

    CAS  Google Scholar 

  36. J. T. Santini, M. J. Cima, and R. Langer. A controlled-release microchip. Nature 397:335–338 (1999). doi:10.1038/16898.

    PubMed  CAS  Google Scholar 

  37. A. Nisar, N. Afzulpurkar, B. Mahaisavariya, and A. Tuantranont. MEMS-based micropumps in drug delivery and biomedical applications. Sens. Actuators, B, Chem. 130:917–942 (2008). doi:10.1016/j.snb.2007.10.064.

    Google Scholar 

  38. C. S. Kwok, P. D. Mourad, L. A. Crum, and B. D. Ratner. Surface modification of polymeric slab surfaces with self-assembled monolayer and its characterization with multi-surface-analytical techniques. Biomacromolecules 1:139–148 (2000). doi:10.1021/bm000292w.

    PubMed  CAS  Google Scholar 

  39. C. S. Kwok, P. D. Mourad, L. A. Crum, and B. D. Ratner. Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery. J. Biomedical Materials Research 57:151–164 (2001). doi:10.1002/1097-4636(200111)57:2<151::AID-JBM1154>3.0.CO;2-5.

    CAS  Google Scholar 

  40. R. K. Schlicher, H. Radhakrishna, T. P. Tolentino, R. P. Apkarian, V. Zarnitsyn, and M. R. Prausnitz. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol. 32:915–924 (2006). doi:10.1016/j.ultrasmedbio.2006.02.1416.

    PubMed  Google Scholar 

  41. G. A. Husseini, and W. G. Pitt. The use of ultrasound and micelles in cancer treatment. Journal of Nanoscience and Nanotechnology 8:2205–2215 (2008). doi:10.1166/jnn.2008.225.

    PubMed  CAS  Google Scholar 

  42. G. A. Husseini, N. Y. Rapoport, D. A. Christensen, J. D. Pruitt, and W. G. Pitt. Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids Surf, B Biointerfaces 24:253–264 (2002). doi:10.1016/S0927-7765(01)00273-9.

    CAS  Google Scholar 

  43. S. L. Huang. Liposomes in ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev. 60:1167–1176 (2008). doi:10.1016/j.addr.2008.03.003.

    PubMed  CAS  Google Scholar 

  44. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc. 125:7860–7865 (2003). doi:10.1021/ja0343095.

    PubMed  CAS  Google Scholar 

  45. P. Shum, J. M. Kim, and D. H. Thompson. Phototriggering of liposomal drug delivery systems. Adv. Drug Deliv. Rev. 53:273–284 (2001). doi:10.1016/S0169-409X(01)00232-0.

    PubMed  CAS  Google Scholar 

  46. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nanoletters 7:1929–1934 (2007). doi:10.1021/nl070610y.

    CAS  Google Scholar 

  47. M. Babincova, D. Leszczynska, P. Sourivong, and P. Babinec. Picosecond laser pulses mediated drug release from magnetoliposomes. Cell. Mol. Biol. Lett. 4:625–630 (1999).

    CAS  Google Scholar 

  48. K. S. Carroll, J. B. McKinney, D. T. Johnson, and C. S. Brazel. Development of magnetothermal responsive systems for tumor treatment. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 30:82–83 (2003).

    Google Scholar 

  49. T.-Y. Liu, S.-H. Hu, D.-M. Liu, and S.-Y. Chen. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22:5974–5978 (2006). doi:10.1021/la060371e.

    PubMed  CAS  Google Scholar 

  50. S.-H. Hu, T.-Y. Liu, D.-M. Liu, and S.-Y. Chen. Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field. Macromolecules 40:6786–6788 (2007). doi:10.1021/ma0707584.

    CAS  Google Scholar 

  51. M. Shinkai. Review: functional magnetic particles for medical application. J. Biosci. Bioeng. 94:606–613 (2002).

    PubMed  CAS  Google Scholar 

  52. A. Ito, M. Shinkai, H. Honda, and T. Kobayashi. Review: medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100:1–11 (2005). doi:10.1263/jbb.100.1.

    PubMed  CAS  Google Scholar 

  53. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson. Applications of magnetic nanoparticles in biomedicine. J. Phys., D, Appl. Phys. 36:R167 (2003). doi:10.1088/0022-3727/36/13/201.

    CAS  Google Scholar 

  54. J. Dobson. Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67:55–60 (2006). doi:10.1002/ddr.20067.

    CAS  Google Scholar 

  55. H. Chen, A. D. Ebner, M. D. Kaminski, A. J. Rosengart, and J. A. Ritter. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent—2: parametric study with multi-wire two-dimensional model. J. Magn. Magn. Mater. 293:616–632 (2005). doi:10.1016/j.jmmm.2005.01.080.

    CAS  Google Scholar 

  56. J. Yang, S.-B. Park, H.-G. Yoon, Y.-M. Huh, and S. Haam. Preparation of poly ε-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int. J. Pharm. 324:185–190 (2006). doi:10.1016/j.ijpharm.2006.06.029.

    PubMed  CAS  Google Scholar 

  57. A. J. Rosengart, M. D. Kaminski, H. Chen, P. L. Caviness, A. D. Ebner, and J. A. Ritter. Magnetizable implants and functionalized magnetic carriers: a novel approach for noninvasive yet targeted drug delivery. J. Magn. Magn. Mater. 293:633–638 (2005). doi:10.1016/j.jmmm.2005.01.087.

    CAS  Google Scholar 

  58. N. Butoescu, O. Jordan, A. Petri-Fink, H. Hofmann, and E. Doelker. Co-encapsulation of dexamethasone 21-acetate and SPIONs into biodegradable polymeric microparticles designed for intra-articular delivery. J. Microencapsul. 25:339–350 (2008). doi:10.1080/02652040801999551.

    PubMed  CAS  Google Scholar 

  59. J. Dobson. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13:283–287 (2006). doi:10.1038/sj.gt.3302720.

    PubMed  CAS  Google Scholar 

  60. J. Dobson, S. H. Cartmell, A. Keramane, and A. J. El Haj. Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Transactions on Nanobioscience 5:173–177 (2006). doi:10.1109/TNB.2006.880823.

    PubMed  Google Scholar 

  61. S. Hughes, A. J. El Haj, and J. Dobson. Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels. Med. Eng. Phys. 27:754–762 (2005). doi:10.1016/j.medengphy.2005.04.006.

    PubMed  Google Scholar 

  62. M. Zborowski, L. P. Sun, L. R. Moore, P. S. Williams, and J. J. Chalmers. Continuous cell separation using novel magnetic quadrupole flow sorter. J. Magn. Magn. Mater. 194:224–230 (1999). doi:10.1016/S0304-8853(98)00581-2.

    CAS  Google Scholar 

  63. H. Chen, A. D. Ebner, D. Bockenfeld, J. A. Ritter, M. D. Kaminski, X. Liu, D. Rempfer, and A. J. Rosengart. A comprehensive in vitro investigation of a portable magnetic separator device for human blood detoxification. Phys. Med. Biol. 52:6053–6072 (2007). doi:10.1088/0031-9155/52/19/023.

    PubMed  CAS  Google Scholar 

  64. H. Choi, S. R. Choi, R. Zhou, H. F. Kung, and I.-W. Chen. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad. Radiol. 11:996–1004 (2004). doi:10.1016/j.acra.2004.04.018.

    PubMed  Google Scholar 

  65. J.-F. Lutz, S. Stiller, A. Hoth, L. Kaufner, U. Pison, and R. Cartier. One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 7:3132–3138 (2006). doi:10.1021/bm0607527.

    PubMed  CAS  Google Scholar 

  66. D. E. Discher, V. Ortiz, G. Srinivas, M. L. Klein, Y. Kim, D. Christian, S. Cai, P. Photos, and F. Ahmed. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Progr. Polymer. Sci. 32:838–857 (2007).

    CAS  Google Scholar 

  67. Y.-C. Chang, S.-W. Chang, and D.-H. Chen. Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co(II) ions. React. Funct. Polym. 66:335–341 (2006). doi:10.1016/j.reactfunctpolym.2005.08.006.

    CAS  Google Scholar 

  68. Induction Atmospheres, What is induction heating, http://www.inductionatmospheres.com/induction_heating.html (2008).

  69. S. Dandamudi, and R. B. Campbell. The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials 28:4673–4683 (2007). doi:10.1016/j.biomaterials.2007.07.024.

    PubMed  CAS  Google Scholar 

  70. A. K. Gupta, and M. Gupta. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1565–1573 (2005). doi:10.1016/j.biomaterials.2004.05.022.

    PubMed  CAS  Google Scholar 

  71. H. Yin, H. P. Too, and G. M. Chow. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818–5826 (2005). doi:10.1016/j.biomaterials.2005.02.036.

    PubMed  CAS  Google Scholar 

  72. D.-H. Kim, K.-M. Kim, K.-N. Kim, I.-B. Shim, and Y.-K. Lee. In vitro and in vivo toxicity of CoFe2O4 nanoparticles for application to magnetic hyperthermia. NSTI Nanotech 2:748–751 (2007). doi:10.1038/nnano.2007.397.

    CAS  Google Scholar 

  73. C. B. Cullity. Introduction to magnetic materials. Addison-Wesley, New York, NY, 1972.

    Google Scholar 

  74. O. Bretcanu, E. Verné, M. Cöisson, P. Tiberto, and P. Allia. Magnetic properties of the ferrimagnetic glass–ceramics for hyperthermia. J. Magn. Magn. Mater. 305:529–533 (2006). doi:10.1016/j.jmmm.2006.02.264.

    CAS  Google Scholar 

  75. D.-H. Kim, D. E. Nikles, D. T. Johnson, and C. S. Brazel. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J. Magn. Magn. Mater. 320:2390–2396 (2008). doi:10.1016/j.jmmm.2008.05.023.

    CAS  Google Scholar 

  76. D.-H. Kim, Y. Thai, D. E. Nikles, C. S. Brazel. Optimized heat generation of MnFe2O4 nanoparticles for magnetic hyperthermia using multifunctional nanoparticles. IEEE Trans. Magn. in press, (2008).

  77. A. A. Kuznetsov, V. G. Leontiev, V. A. Brukvin, G. N. Vorozhtsov, B. Y. Kogan, O. A. Shlyakhtin, A. M. Yunin, O. I. Tsybin, and O. A. Kuznetsov. Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature. J. Magn. Magn. Mat. SCAMC-06 311:197–203 (2007).

    CAS  Google Scholar 

  78. H. G. Bagaria, D. T. Johnson, C. Srivastava, G. B. Thompson, M. Shamsuzzoha, D. E. Nikles. Formation of FePt nanoparticles by organometallic synthesis. J. Appl. Phys. 101:paper 104313 (2007).

    Google Scholar 

  79. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner. High K-u materials approach to 100 Gbits/in(2). IEEE Trans. Magn. 36:10–15 (2000). doi:10.1109/20.824418.

    CAS  Google Scholar 

  80. R. M. Bozorth. Ferromagnetism; IEEE, New York, NY.

  81. C. M. Burton, and A. E. Walker. The RF thermoseed—a thermally self-regulating implant for the production of brain lesions. IEEE Trans. Biomed. Eng. 18:104–109 (1971). doi:10.1109/TBME.1971.4502810.

    PubMed  CAS  Google Scholar 

  82. T. Todaka, T. Kishino, and M. Enokizono. Low curie temperature material for induction heating self-temperature controlling system. J. Magn. Magn. Mater. 320:E702–E707 (2008). doi:10.1016/j.jmmm.2008.04.146.

    CAS  Google Scholar 

  83. H. Bagaria, and D. T. Johnson. Analytical and numerical solution to a concentric sphere model and optimization for magnetic fluid hyperthermia treatment. Int. J. Hyperthermia 21:57–75 (2005). doi:10.1080/02656730410001726956.

    PubMed  CAS  Google Scholar 

  84. R. C. O’Handley. Modern magnetic materials: principles and applications. Wiley, New York, 1999.

    Google Scholar 

  85. C. Liu, and Z. J. Zhang. Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem. Mater. 13:2092–2096 (2001). doi:10.1021/cm0009470.

    CAS  Google Scholar 

  86. R. Evans, U. Nowak, F. Dorfbauer, T. Shrefl, O. Mryasov, R. W. Chantrell, and G. Grochola. The influence of shape and structure on the curie temperature of Fe and Co nanoparticles. J. Appl. Physi. 99:08G703 (2006).

    Google Scholar 

  87. G. Glockl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, and W. Weitschies. The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys., Condens. Matter 18:S2935–S2949 (2006). doi:10.1088/0953-8984/18/38/S27.

    Google Scholar 

  88. M. I. Shliomis, A. F. Pshenichnikov, K. I. Morozov, and Y. Shurubor. Magnetic properties of ferrocolloids. J. Magn. Magn. Mater. 85:40–46 (1990). doi:10.1016/0304-8853(90)90013-G.

    CAS  Google Scholar 

  89. A. Shitzer, and R. C. Eberhart (eds.), Heat Transfer in Medicine and Biology. Plenum, New York, 1985.

  90. H. Arkin, L. X. Xu, and K. R. Holmes. Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans. Biomed. Eng. 41:97–107 (1994). doi:10.1109/10.284920.

    PubMed  CAS  Google Scholar 

  91. C. S. Brazel, and N. A. Peppas. Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. J. Controlled Release 39:57–64 (1996). doi:10.1016/0168-3659(95)00134-4.

    CAS  Google Scholar 

  92. A. Chilkoti, M. R. Dreher, D. E. Meyer, and D. Raucher. Targeted drug delivery by thermally responsive polymers. Adv. Drug deliv. Rev. 54:613–630 (2002). doi:10.1016/S0169-409X(02)00041-8.

    PubMed  CAS  Google Scholar 

  93. T. Okano. Molecular design of temperature-responsive polymers as intelligent materials. Adv. Polym. Sci. 110:179–197 (1993). doi:10.1007/BFb0021133.

    CAS  Google Scholar 

  94. A. Gutowska, J. S. Bark, I. C. Kwon, Y. H. Bae, Y. Cha, and S. W. Kim. Squeezing hydrogels for controlled oral drug delivery. J. Control Release 48:141–148 (1997). doi:10.1016/S0168-3659(97)00041-2.

    CAS  Google Scholar 

  95. M. Bikram, A. M. Gobin, R. E. Whitmire, and J. L. West. Temperature-sensitive hydrogels with SiO2–Au nanoshells for controlled drug delivery. J. Control Release 123:219–227 (2007). doi:10.1016/j.jconrel.2007.08.013.

    PubMed  CAS  Google Scholar 

  96. R. Yoshida, Y. Kaneko, K. Sakai, T. Okano, Y. Sakurai, Y. H. Bae, and S. W. Kim. Positive thermosensitive pulsatile drugs release using negative thermosensitive hydrogels. J. Control Release 32:97–102 (1994). doi:10.1016/0168-3659(94)90229-1.

    CAS  Google Scholar 

  97. S.-X. Cheng, J. T. Zhang, and R.-X. Zhuo. Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties. J. Biomed. Mater. Res. 67A:96–103 (2003). doi:10.1002/jbm.a.10062.

    CAS  Google Scholar 

  98. H. Feil, Y. H. Bae, J. Feijen, and S. W. Kim. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500 (1993). doi:10.1021/ma00062a016.

    CAS  Google Scholar 

  99. I. Ankareddi, and C. S. Brazel. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. Int. J. Pharm. 336:241–247 (2007). doi:10.1016/j.ijpharm.2006.11.065.

    PubMed  CAS  Google Scholar 

  100. J. Y. P. Chen, L.-M. Yang, L.-L. Shi, and H.-J. Luo. Synthesis and properties of poly(N-isopropylacrylamide-co-acrylamide) hydrogels. Macromol. Symp. 225:103–112 (2005). doi:10.1002/masy.200550709.

    CAS  Google Scholar 

  101. C. S. Brazel, and N. A. Peppas. Thermo- and chemo-mechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Macromolecules 28:8016–8020 (1995). doi:10.1021/ma00128a007.

    CAS  Google Scholar 

  102. S. G. Hirsch, and R. J. Spontak. Temperature-dependent property development in hydrogels derived from hydroxypropylcellulose. Polymer 43:123–129 (2002). doi:10.1016/S0032-3861(01)00608-5.

    CAS  Google Scholar 

  103. M. D. Determan, J. P. Cox, S. Seifert, P. Thiyagarajan, and S. K. Mallapragada. Synthesis and characterization of temperature and pH-responsive pentablock copolymers. Polymer 46:6933–6946 (2005). doi:10.1016/j.polymer.2005.05.138.

    CAS  Google Scholar 

  104. K. H. Bae, S. H. Choi, S. Y. Park, Y. Lee, and T. G. Park. Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Langmuir 22:6380–6384 (2006). doi:10.1021/la0606704.

    PubMed  CAS  Google Scholar 

  105. S. H. Cho, M. S. Jhon, S. H. Yuk, and H. B. Lee. Temperature-induced phase transition of poly(N,N-dimethylaminoethyl methacrylate-co-acrylamide). J. Polym. Sci. B: Polym. Phys. 35:595–598 (1997). doi:10.1002/(SICI)1099-0488(199703)35:4<595::AID-POLB7>3.0.CO;2-P.

    CAS  Google Scholar 

  106. D. S. Hart, and S. H. Gehrke. Thermally associating polypeptides designed for drug delivery produced by genetically engineered cells. J. Pharm. Sci. 96:484–516 (2007). doi:10.1002/jps.20755.

    PubMed  CAS  Google Scholar 

  107. I. Ankareddi, M. L. Hampel, M. K. Sewell, D.-H. Kim, and C. S. Brazel. Temperature controlled grafted polymer network incorporated with magnetic nanoparticles to control drug release induced by an external magnetothermal trigger. NSTI Nanotech 2:431–434 (2007).

    CAS  Google Scholar 

  108. M. K. Sewell, K. D. Fugit, I. Ankareddi, C. Zhang, M. L. Hampel, D.-H. Kim, and C. S. Brazel. Magnetothermally-triggered drug delivery using hydrogels with imbedded cobalt ferrite, iron platinum or manganese ferrite nanoparticles. PMSE Preprints 98:694–695 (2008).

    CAS  Google Scholar 

  109. C.-Y. Lin, and K.-C. Ho. Synthesis of superparamagnetic magnetite nanoparticles for thermoresponsive drug delivery. NSTI Nanotech 2:405–408 (2007).

    CAS  Google Scholar 

  110. H. Pardoe, W. Chua-anusorn, T. G. St. Pierre, and J. Dobson. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J. Magn. Magn. Mater. 225:41–46 (2001). doi:10.1016/S0304-8853(00)01226-9.

    CAS  Google Scholar 

  111. G. D. Fu, S. C. Wuang, F. J. Xu, K. G. Neoh, and E. T. Kang. Functionalization via surface-initiated living radical polymerizations. Polymer Preprints 48(1):693–694 (2007).

    CAS  Google Scholar 

  112. B. Korth, M. Judd, B. Wong, and J. Pyun. Synthesis of core-shell magnetic nanoparticles using controlled/living radical polymerization. Polymer Preprints 46:437 (2005).

    CAS  Google Scholar 

  113. K.-H. Roh, and J. Lahann. Anisotropic encapsulation of superparamagnetic nanocrystals in polymeric biphasic nanocolloids. Polymer Preprints 48(1):209–210 (2007).

    CAS  Google Scholar 

  114. Y. Wu, J. Guo, W. Yang, C. Wang, and S. Fu. Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres. Polymer 47:5287–5294 (2006). doi:10.1016/j.polymer.2006.05.017.

    CAS  Google Scholar 

  115. H. G. Bagaria, E. T. Ada, M. Shamsuzzoha, D. E. Nikles, and D. T. Johnson. Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Langmuir 22:7732–7737 (2006). doi:10.1021/la0601399.

    PubMed  CAS  Google Scholar 

  116. L. L. Lao, and R. V. Ramanujan. Magnetic and hydrogel composite materials for hyperthermia applications. J. Mater. Sci., Mater. Med. 15:1061–1064 (2004). doi:10.1023/B:JMSM.0000046386.78633.e5.

    CAS  Google Scholar 

  117. R. A. Frimpong, and J. Z. Hilt. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. J. Biomed. Mater. Res. 80A:1–6 (2007). doi:10.1002/jbm.a.30962.

    CAS  Google Scholar 

  118. N. S. Satarkar, and J. Z. Hilt. Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomaterialia 4:11–16 (2008). doi:10.1016/j.actbio.2007.07.009.

    PubMed  CAS  Google Scholar 

  119. N. S. Satarkar, and J. Z. Hilt. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Control Release 130:246–251 (2008). doi:10.1016/j.jconrel.2008.06.008.

    PubMed  CAS  Google Scholar 

  120. C. J. Meledandri, and D. F. Brougham. Optimisation of magnetoliposomes for biomedical multi-tasking; potential dual contrast agents and drug delivery vehicles. NSTI Nanotech 2:335–338 (2007).

    CAS  Google Scholar 

  121. R. Hergt, S. Dutz, R. Muller, and M. Zeisberger. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys., Condens. Matter 18:S2919–S2934 (2006). doi:10.1088/0953-8984/18/38/S26.

    CAS  Google Scholar 

  122. J. Chatterjee, Y. Haik, and C. Jen Chen. Biodegradable magnetic gel: synthesis and characterization. Colloid Polym. Sci. 281:892–896 (2003). doi:10.1007/s00396-003-0916-z.

    CAS  Google Scholar 

  123. D.-H. Kim, S.-H. Lee, K.-N. Kim, K.-M. Kim, I.-B. Shim, and Y.-K. Lee. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application. J. Magn. Magn. Mater. 293:287–292 (2005). doi:10.1016/j.jmmm.2005.02.078.

    CAS  Google Scholar 

  124. M. Gonzales, and K. M. Krishnan. Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J. Magn. Magn. Mater. 293:265–270 (2005). doi:10.1016/j.jmmm.2005.02.020.

    CAS  Google Scholar 

  125. B.-S. Kim, J.-M. Qiu, J.-P. Wang, and T. A. Taton. Magnetomicelles: Composite nanoparticles and cross-linked amphiphilic block copolymers. Nanoletters 5:1987–1991 (2005). doi:10.1021/nl0513939.

    CAS  Google Scholar 

  126. M. Nakayama, T. Okano, T. Miyazaki, F. Kohori, K. Sakai, and M. Yokoyama. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control Release 115:46–56 (2006). doi:10.1016/j.jconrel.2006.07.007.

    PubMed  CAS  Google Scholar 

  127. H. Wei, X.-Z. Zhang, Y. Zhou, S.-X. Cheng, and R.-X. Zhuo. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials 27:2028–2034 (2006). doi:10.1016/j.biomaterials.2005.09.028.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Brazel acknowledges the J. William Fulbright Commission for supporting his sabbatical in the United Kingdom. The University of Alabama’s Alton Scott Memorial Fund supported research in the Magnetic Biomaterials research working group. Discussions with David Nikles, Hitesh Bagaria and Dong-Hyun Kim, collaborators at UA, have also been particularly helpful in developing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Brazel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazel, C.S. Magnetothermally-responsive Nanomaterials: Combining Magnetic Nanostructures and Thermally-Sensitive Polymers for Triggered Drug Release. Pharm Res 26, 644–656 (2009). https://doi.org/10.1007/s11095-008-9773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9773-2

KEY WORDS

Navigation