Skip to main content
Log in

Poly (lactide-co-glycolide)-Polymethacrylate Nanoparticles for Intramuscular Delivery of Plasmid Encoding Interleukin-10 to Prevent Autoimmune Diabetes in Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Determine the efficiency of cationic nanoparticles prepared by blending poly (lactide-co-glycolide; PLGA) and methacrylate copolymer (Eudragit® E100) to deliver a therapeutic gene encoding mouse interleukin-10, in vitro and in vivo.

Methods

Nanoparticles prepared with PLGA and E100 were evaluated for delivery of plasmid DNA encoding mouse interleukin-10 in vitro and in vivo in mice upon intramuscular injection. Blood-glucose, serum interferon-gamma levels and histology of pancreas were studied to determine therapeutic efficacy. Histological evaluation of skeletal muscle from the injection site was performed to assess the biocompatibility of nanoparticles.

Results

PLGA/E100 nanoparticles showed endosomal escape evidenced by confocal microscopy and buffering ability. Transfecting HEK293 cells with plasmid-loaded PLGA/E100 nanoparticles resulted in significantly (p < 0.05) greater expression of interleukin-10 compared to PLGA nanoparticles. Mice treated with PLGA/E100 nanoparticles displayed higher serum levels of interleukin-10 and lower blood glucose levels compared to those treated with interleukin-10 plasmid alone or PLGA nanoparticles. High expression of interleukin-10 facilitated suppression of interferon-gamma levels and reduced islet infiltration. Histology of muscle showed that nanoparticles were biocompatible and did not cause chronic inflammatory response.

Conclusions

Nanoparticles prepared by blending PLGA with methacrylate can efficiently and safely deliver plasmid DNA encoding mouse interleukin-10 leading to prevention of autoimmune diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. J. A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, and P. L. Felgner. Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468 (1990). doi:10.1126/science.1690918.

    Article  PubMed  CAS  Google Scholar 

  2. S. K. Tripathy, E. C. Svensson, H. B. Black, E. Goldwasser, M. Margalith, P. M. Hobart, and J. M. Leiden. Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc. Natl. Acad. Sci. U. S. A. 93:10876–10880 (1996). doi:10.1073/pnas.93.20.10876.

    Article  PubMed  CAS  Google Scholar 

  3. Q. L. Lu, G. Bou-Gharios, and T. A. Partridge. Non-viral gene delivery in skeletal muscle: a protein factory. Gene. Ther. 10:131–142 (2003). doi:10.1038/sj.gt.3301874.

    Article  PubMed  CAS  Google Scholar 

  4. I. S. Kim, S. K. Lee, Y. M. Park, Y. B. Lee, S. C. Shin, K. C. Lee, and I. J. Oh. Physicochemical characterization of poly(l-lactic acid) and poly(d,l-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int. J. Pharm. 298:255–262 (2005). doi:10.1016/j.ijpharm.2005.04.017.

    Article  PubMed  CAS  Google Scholar 

  5. P. Li, J. M. Zhu, P. Sunintaboon, and F. W. Harris. New route to amphiphilic core-shell polymer nanospheres: graft copolymerization of methyl methacrylate from water-soluble polymer chains containing amino groups. Langmuir 18:8641–8646 (2002). doi:10.1021/la0261343.

    Article  Google Scholar 

  6. D. Y. Kwoh, C. C. Coffin, C. P. Lollo, J. Jovenal, M. G. Banaszczyk, P. Mullen, A. Phillips, A. Amini, J. Fabrycki, R. M. Bartholomew, S. W. Brostoff, and D. J. Carlo. Stabilization of poly-l-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim. Biophys. Acta. 1444:171–190 (1999).

    PubMed  CAS  Google Scholar 

  7. R. Moriguchi, K. Kogure, H. Akita, S. Futaki, M. Miyagishi, K. Taira, and H. Harashima. A multifunctional envelope-type nano device for novel gene delivery of siRNA plasmids. Int. J. Pharm. 301:277–285 (2005). doi:10.1016/j.ijpharm.2005.05.021.

    Article  PubMed  CAS  Google Scholar 

  8. A. Bozkir and O. M. Saka. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv. 11:107–112 (2004). doi:10.1080/10717540490280705.

    Article  PubMed  CAS  Google Scholar 

  9. K. A. Howard, U. L. Rahbek, X. Liu, C. K. Damgaard, S. Z. Glud, M. Ø. Andersen, M. B. Hovgaard, A. Schmitz, J. R. Nyengaard, F. Besenbacher, and J. Kjems. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14:476–484 (2006). doi:10.1016/j.ymthe.2006.04.010.

    Article  PubMed  CAS  Google Scholar 

  10. S. Wang, N. Ma, S. J. Gao, H. Yu, and K. W. Leong. Transgene expression in the brain stem effected by intramuscular injection of polyethylenimine/DNA complexes. Mol. Ther. 3:658–664 (2001). doi:10.1006/mthe.2001.0324.

    Article  PubMed  CAS  Google Scholar 

  11. J. H. Williams, S. R. Sirsi, D. R. Latta, and G. J. Lutz. Induction of dystrophin expression by exon skipping in mdx mice following intramuscular injection of antisense oligonucleotides complexed with PEG-PEI copolymers. Mol. Ther. 14:88–96 (2006). doi:10.1016/j.ymthe.2005.11.025.

    Article  PubMed  CAS  Google Scholar 

  12. J. P. Behr. The proton sponge—a trick to enter cells the viruses did not exploit. CHIMIA 51:34–36 (1997).

    CAS  Google Scholar 

  13. P. Chollet, M. C. Favrot, A. Hurbin, and J. L. Coll. Side-effects of a systemic injection of linear polyethylenimine–DNA complexes. J. Gene. Med. 4:84–91 (2002). doi:10.1002/jgm.237.

    Article  PubMed  Google Scholar 

  14. S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. 11:990–995 (2005). doi:10.1016/j.ymthe.2005.02.010.

    Article  PubMed  CAS  Google Scholar 

  15. P. Dubruel, B. Christiaens, M. Rosseneu, J. Vandekerckhove, J. Grooten, V. Goossens, and E. Schacht. Buffering properties of cationic polymethacrylates are not the only key to successful gene delivery. Biomacromolecules 5:379–388 (2004). doi:10.1021/bm034438d.

    Article  PubMed  CAS  Google Scholar 

  16. P. Dubruel, B. Christiaens, B. Vanloo, K. Bracke, M. Rosseneu, J. Vandekerckhove, and E. Schacht. Physicochemical and biological evaluation of cationic polymethacrylates as vectors for gene delivery. Eur. J. Pharm. Sci. 18:211–220 (2003). doi:10.1016/S0928-0987(02)00280-4.

    Article  PubMed  CAS  Google Scholar 

  17. J. W. Yoon and H. S. Jun. Autoimmune destruction of pancreatic beta cells. Am. J. Ther. 12:580–591 (2005). doi:10.1097/01.mjt.0000178767.67857.63.

    Article  PubMed  Google Scholar 

  18. D. Mathis, L. Vence, and C. Benoist. Beta-Cell death during progression to diabetes. Nature 414:792–798 (2001). doi:10.1038/414792a.

    Article  PubMed  CAS  Google Scholar 

  19. C. J. Clarke, A. Hales, A. Hunt, and B. M. Foxwell. IL-10-mediated suppression of TNF-alpha production is independent of its ability to inhibit NF kappa B activity. Eur. J. Immunol. 28:1719–1726 (1998). doi:10.1002/(SICI)1521-4141(199805)28:05<1719::AID-IMMU1719>3.0.CO;2-Q.

    Article  PubMed  CAS  Google Scholar 

  20. T. A. Hamilton, Y. Ohmori, and J. Tebo. Regulation of chemokine expression by antiinflammatory cytokines. Immunol. Res. 25:229–245 (2002). doi:10.1385/IR:25:3:229.

    Article  PubMed  CAS  Google Scholar 

  21. Z. L. Zhang, S. X. Shen, B. Lin, L. Y. Yu, L. H. Zhu, W. P. Wang, F. H. Luo, and L. H. Guo. Intramuscular injection of interleukin-10 plasmid DNA prevented autoimmune diabetes in mice. Acta. Pharmacol. Sin. 24:751–756 (2003)Medline.

    PubMed  CAS  Google Scholar 

  22. M. Lee, K. S. Ko, S. Oh, and S. W. Kim. Prevention of autoimmune insulitis by delivery of a chimeric plasmid encoding interleukin-4 and interleukin-10. J. Control Release 88:333–342 (2003). doi:10.1016/S0168-3659(03)00031-2.

    Article  PubMed  CAS  Google Scholar 

  23. J. J. Koh, K. S. Ko, M. Lee, S. Han, J. S. Park, and S. W. Kim. Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice. Gene Ther. 7:2099–2104 (2000). doi:10.1038/sj.gt.3301334.

    Article  PubMed  CAS  Google Scholar 

  24. K. S. Ko, M. Lee, J. J. Koh, and S. W. Kim. Combined administration of plasmids encoding IL-4 and IL-10 prevents the development of autoimmune diabetes in nonobese diabetic mice. Mol. Ther. 4:313–316 (2001). doi:10.1006/mthe.2001.0459.

    Article  PubMed  CAS  Google Scholar 

  25. M. X. Tang and F. C. Szoka. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 4:823–832 (1997). doi:10.1038/sj.gt.3300454.

    Article  PubMed  CAS  Google Scholar 

  26. C. G. Oster, N. Kim, L. Grode, L. Barbu-Tudoran, A. K. Schaper, S. H. Kaufmann, and T. Kissel. Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. J. Control Release. 104:359–377 (2005).

    PubMed  CAS  Google Scholar 

  27. M. Singh, M. Briones, G. Ott, and D. O’Hagan. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. U. S. A. 97:811–816 (2000). doi:10.1073/pnas.97.2.811.

    Article  PubMed  CAS  Google Scholar 

  28. E. Kawasaki, N. Abiru, and K. Eguchi. Prevention of type 1 diabetes: from the view point of beta cell damage. Diabetes Res. Clin. Pract. 66(Suppl 1):S27–32 (2004). doi:10.1016/j.diabres.2003.09.015.

    Article  PubMed  CAS  Google Scholar 

  29. V. Deleuze, D. Scherman, and M. F. Bureau. Interleukin-10 expression after intramuscular DNA electrotransfer: kinetic studies. Biochem. Biophys. Res. Commun. 299:29–34 (2002). doi:10.1016/S0006-291X(02)02580-9.

    Article  PubMed  CAS  Google Scholar 

  30. B. Wang, I. André, A. Gonzalez, J. D. Katz, M. Aguet, C. Benoist, and D. Mathis. Interferon-gamma impacts at multiple points during the progression of autoimmune diabetes. Proc. Natl. Acad. Sci. U. S. A. 94:13844–13849 (1997). doi:10.1073/pnas.94.25.13844.

    Article  PubMed  CAS  Google Scholar 

  31. B. Hultgren, X. Huang, N. Dybdal, and T. A. Stewart. Genetic absence of gamma-interferon delays but does not prevent diabetes in NOD mice. Diabetes 45:812–817 (1996). doi:10.2337/diabetes.45.6.812.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We acknowledge financial support to JS from NIH grant # HD 46483-01 and Fraternal Order of Eagles fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basarkar, A., Singh, J. Poly (lactide-co-glycolide)-Polymethacrylate Nanoparticles for Intramuscular Delivery of Plasmid Encoding Interleukin-10 to Prevent Autoimmune Diabetes in Mice. Pharm Res 26, 72–81 (2009). https://doi.org/10.1007/s11095-008-9710-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9710-4

KEY WORDS

Navigation