Skip to main content

Advertisement

Log in

Chitosan-Thiamine Pyrophosphate as a Novel Carrier for siRNA Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A novel siRNA carrier was formulated between chitosan (CS) and thiamine pyrophosphate (TPP). Their ability to deliver siRNA were evaluated in stable and constitutive EGFP-expressing HepG2 cells.

Methods

CS-TPP was prepared by dissolving CS in TPP solution at a CS:TPP molar ratio of 1.5:1. Complexes of CS-TPP/siRNA were formed at varying weight ratios and characterized using gel electrophoresis. Their morphologies and particle sizes were evaluated, and the transfection efficiency and cytotoxicity of CS-TPP/siRNA complexes were examined in stable and constitutive EGFP-expressing HepG2 cells.

Results

Gel electrophoresis results indicated that binding of CS-TPP and siRNA depended on the molecular weight (MW) and weight ratio of CS, and the particle sizes of CS-TPP/siRNA complexes were in nano-size. The CS-TPP-mediated siRNA silencing of the endogenous EGFP gene occurred maximally with 70–73% efficiency. The CS-TPP/siRNA complex with the lowest MW of CS (20 kDa) at a weight ratio of 80 showed the strongest inhibition of gene expression, which was higher than Lipofectamine 2000™. Over 90% the average cell viabilities of the complexes were observed by MTT assay.

Conclusions

This study suggests that CS-TPP is straightforward to prepare, safe and exhibits significantly improved siRNA delivery potential in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. A. Sharp. RNA interference. Genes Dev. 15:485–490 (2001) doi:10.1101/gad.880001.

    Article  PubMed  CAS  Google Scholar 

  2. Y. Dorsett, and T. Tuschl. siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 3:318–329 (2004) doi:10.1038/nrd1345.

    Article  PubMed  CAS  Google Scholar 

  3. R. C. Ryther, A. S. Flynt, J. A. Phillips, and J. G. Patton. siRNA therapeutics big potential from small RNAs. Gene Ther. 1:25–11 (2005).

    Google Scholar 

  4. B. Urban-Klein, S. Werth, S. Abuharbeid, F. Czubayko, and A. Aigner. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12:461–466 (2005) doi:10.1038/sj.gt.3302425.

    Article  PubMed  CAS  Google Scholar 

  5. F. Takeshita, Y. Minakuchi, S. Nagahara, K. Honma, H. Sasaki, K. Hirai, T. Teratani, N. Namatame, Y. Yamamoto, K. Hanai, T. Kato, A. Sano, and T. Ochiya. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc. Natl. Acad. Sci. U. S. A. 102:12177–12182 (2005) doi:10.1073/pnas.0501753102.

    Article  PubMed  CAS  Google Scholar 

  6. C. N. Landen Jr., A. Chavez-Reyes, C. Bucana, R. Schmandt, M. T. Deavers, L.opez-G. Berestein, and A.K. Sood. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65:6910–6918 (2005) doi:10.1158/0008-5472.CAN-05-0530.

    Article  PubMed  CAS  Google Scholar 

  7. A. Hassan, Y. Tian, W. Zheng, H. Ji, K. Sandberg, and J. G. Verbalis. Small interfering RNA-mediated functional silencing of vasopressin V2 receptors in the mouse kidney. Physiol. Genomics. 21:382–388 (2005) doi:10.1152/physiolgenomics.00147.2004.

    Article  PubMed  CAS  Google Scholar 

  8. B. I. Florea, M. Thanou, H. E. Junginger, and G. Borchard. Enhancement of bronchial octreotide absorption by chitosan and N-trimethyl chitosan shows linear in vitro/in vivo correlation. J. Control. Release. 110:353–361 (2006) doi:10.1016/j.jconrel.2005.10.001.

    Article  PubMed  CAS  Google Scholar 

  9. M. Lee, J.W. Nah, Y. Kwon, J. J. Koh, K. S. Ko, and S. W. Kim. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm. Res. 18:427–431 (2001) doi:10.1023/A:1011037807261.

    Article  PubMed  CAS  Google Scholar 

  10. T. Ishii, Y. Okahata, and T. Sato. Mechanism of cell transfection with plasmid/chitosan complexes. Biochim. Biophys. Acta. 1514:51–64 (2001) doi:10.1016/S0005-2736(01)00362-5.

    Article  PubMed  CAS  Google Scholar 

  11. W. Weecharangsan, P. Opanasopit, T. Ngawhirunpat, T. Rojanarata, and A. Apirakaramwong. Chitosan lactate as a nonviral gene delivery vector in COS-1 cells. AAPS PharmSciTech. 7:E1–E6 (2006) doi:10.1208/pt070366.

    Article  Google Scholar 

  12. X. Zhao, S. B. Yu, F. L. Wu, Z. B. Mao, and C. L. Yu. Transfection of primary chondrocytes using chitosan-pEEGFP nanoparticles. J. Control. Release. 112:223–228 (2006) doi:10.1016/j.jconrel.2006.01.016.

    Article  PubMed  CAS  Google Scholar 

  13. F. C. MacLaughlin, R.J. Mumper, J. Wang, J.M. Tagliaferri, I. Gill, M. HinCHyiffe, and A.P. Rolland. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Control. Release. 56:259–272 (1998) doi:10.1016/S0168-3659(98)00097-2.

    Article  PubMed  CAS  Google Scholar 

  14. M. Huang, C. W. Fong, E. Khorc, and L. Y. Lim. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J. Control. Release. 106:391–406 (2005) doi:10.1016/j.jconrel.2005.05.004.

    Article  PubMed  CAS  Google Scholar 

  15. T. Kiang, J. Wen, H. W. Lim, and K. W. Leong. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials. 25:5293–5301 (2004) doi:10.1016/j.biomaterials.2003.12.036.

    Article  PubMed  CAS  Google Scholar 

  16. M. Lavertu, S. Méthot, N. Tran-Khanh, and M.D. Buschmann. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials. 27:4815–4824 (2006) doi:10.1016/j.biomaterials.2006.04.029.

    Article  PubMed  CAS  Google Scholar 

  17. W. B. Tan, S. Jiang, and Y. Zhang. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials. 28:1565–1571 (2007) doi:10.1016/j.biomaterials.2006.11.018.

    Article  PubMed  CAS  Google Scholar 

  18. X. Liu, K. A. Howard, M. Dong, M. O. Andersen, U. L. Rahbek, M. G. Johnsen, O. C. Hansen, F. Besenbacher, and J. Kjems. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials. 28:1280–1288 (2007) doi:10.1016/j.biomaterials.2006.11.004.

    Article  PubMed  CAS  Google Scholar 

  19. J. Y. Pille, H. Li, E. Blot, J. R. Bertrand, L. L. Pritchard, P. Opolon, A. Maksimenko, H. Lu, J. P. Vannier, J. Soria, C. Malvy, and C. Soria. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum. Gene Ther. 17:1019–1026 (2006) doi:10.1089/hum.2006.17.1019.

    Article  PubMed  CAS  Google Scholar 

  20. H. Katas, and H. O. Alpar. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release. 115:216–225 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. K. A. Howard, U. L. Rahbek, X. Liu, C. K. Damgaard, S. Z. Glud, M. O. Andersen, M. B. Hovgaard, A. Schmitz, J. R. Nyengaard, F. Besenbacher, and J. Kjems. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14:476–484 (2006) doi:10.1016/j.ymthe.2006.04.010.

    Article  PubMed  CAS  Google Scholar 

  22. W. Weecharangsan, P. Opanasopit, T. Ngawhirunpat, A. Apirakaramwong, T. Rojanarata, U. Ruktanonchai, and R. J. Lee. Evaluation of chitosan salts as non-viral gene vectors in CHO-K1 cells. Int. J. Pharm. 348:161–168 (2008) doi:10.1016/j.ijpharm.2007.07.011.

    Article  PubMed  CAS  Google Scholar 

  23. P. C. Engel. Enzyme cofactors. In P. C. Engel (ed.), Enzymology LabFax, Academic, California, 1996, pp. 244–245.

    Google Scholar 

  24. M. D. Smith, J. C. Barbenel, J. M. Courtney, and M. H. Grant. Novel quantitative methods for the determination of biomaterial cytotoxicity. Int. J. Artif. Organs. 15:191–184 (1992).

    PubMed  CAS  Google Scholar 

  25. A. C. Grayson, A. M. Doody, and D. Putnam. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res. 23:1868–1876 (2006) doi:10.1007/s11095-006-9009-2.

    Article  PubMed  CAS  Google Scholar 

  26. M. O. Andersen, K. A. Howard, S. R. Paludan, F. Besenbacher, and J. Kjems. Delivery of siRNA from lyophilized polymeric surfaces. Biomaterials. 29:506–512 (2008) doi:10.1016/j.biomaterials.2007.10.003.

    Article  PubMed  CAS  Google Scholar 

  27. K. Romóren, S. Pedersen, G. Smistad, O. Evensen, and B.J. Thu. The influence of formulation variables on in vitro transfection efficiency and physicochemical properties of chitosan-based polyplexes. Int. J. Pharm. 261:115–127 (2003) doi:10.1016/S0378-5173(03)00301-6.

    Article  PubMed  CAS  Google Scholar 

  28. T. Sato, T. Ishii, and Y. Okahata. In vitro gene delivery mediated by chitosan: effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials. 22:2075–2080 (2001) doi:10.1016/S0142-9612(00)00385-9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support by Genetic Engineering and Biotechnology (BIOTEC), Thailand (grant number: BT-B-01-MG-16–4812), the Commission of Higher Education (Thailand), the Thailand Research Funds and National Research Council of Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praneet Opanasopit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojanarata, T., Opanasopit, P., Techaarpornkul, S. et al. Chitosan-Thiamine Pyrophosphate as a Novel Carrier for siRNA Delivery. Pharm Res 25, 2807–2814 (2008). https://doi.org/10.1007/s11095-008-9648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9648-6

KEY WORDS

Navigation