Skip to main content
Log in

Lipid-based Formulations for Danazol Containing a Digestible Surfactant, Labrafil M2125CS: In Vivo Bioavailability and Dynamic In Vitro Lipolysis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the use of Labrafil® M2125CS as a lipid vehicle for danazol. Further, the possibility of predicting the in vivo behavior with a dynamic in vitro lipolysis model was evaluated.

Methods

Danazol (28 mg/kg) was administered orally to rats in four formulations: an aqueous suspension, two suspensions in Labrafil® M2125CS (1 and 2 ml/kg) and a solution in Labrafil® M2125CS (4 ml/kg).

Results

The obtained absolute bioavailabilities of danazol were 1.5 ± 0.8%; 7.1 ± 0.6%; 13.6 ± 1.4% and 13.3 ± 3.4% for the aqueous suspension, 1, 2 and 4 ml Labrafil® M2125CS per kg respectively. Thus administration of danazol with Labrafil® M2125CS resulted in up to a ninefold increase in the bioavailability, and the bioavailability was dependent on the Labrafil® M2125CS dose. In vitro lipolysis of the formulations was able to predict the rank order of the bioavailability from the formulations, but not the absorption profile of the in vivo study.

Conclusions

The bioavailability of danazol increased when Labrafil® M2125CS was used as a vehicle, both when danazol was suspended and solubilized in the vehicle. The dynamic in vitro lipolysis model could be used to rank the bioavailabilities of the in vivo data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. J. MacGregor, J. K. Embleton, J. E. Lacy, E. A. Perry, L. J. Solomon, H. Seager, and C. W. Pouton. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv. Drug Deliv. Rev. 25:33–46 (1997) doi:10.1016/S0169-409X(96)00489-9.

    Article  CAS  Google Scholar 

  2. A. J. Humberstone, and W. N. Charman. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv. Drug Deliv. Rev. 25:103–128 (1997) doi:10.1016/S0169-409X(96)00494-2.

    Article  CAS  Google Scholar 

  3. C. W. Pouton. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29:278–287 (2006) doi:10.1016/j.ejps.2006.04.016.

    Article  PubMed  CAS  Google Scholar 

  4. G. A. Kossena, B. J. Boyd, C. J. H. Porter, and W. N. Charman. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water-soluble drugs. J. Pharm. Sci. 92:634–648 (2003) doi:10.1002/jps.10329.

    Article  PubMed  CAS  Google Scholar 

  5. C. J. H. Porter, N. L. Trevaskis, and W. N. Charman. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 6:231–248 (2007) doi:10.1038/nrd2197.

    Article  PubMed  CAS  Google Scholar 

  6. P. J. Carrigan, and T. R. Bates. Biopharmaceutics of drugs administered in lipid-containing dosage forms I: GI absorption of griseofulvin from an oil-in-water emulsion in the rat. J. Pharm. Sci. 62:1476–1479 (1973) doi:10.1002/jps.2600620918.

    Article  PubMed  CAS  Google Scholar 

  7. S. Chakrabarti, and F. M. Belpaire. Biovailability of phenytoin in lipid containing dosage forms in rats. J. Pharm. Pharmacol. 30:330–331 (1978).

    PubMed  CAS  Google Scholar 

  8. R. C. Bravo González, J. Huwyler, I. Walter, R. Mountfield, and B. Bittner. Improved oral bioavailability of cyclosporin A in male Wistar rats Comparison of a Solutol HS 15 containing self-dispersing formulation and a microsuspension. Int. J. Pharm. 245:143–151 (2002) doi:10.1016/S0378-5173(02)00339-3.

    Article  PubMed  Google Scholar 

  9. A. Cilek, N. Celebi, and F. Tirnaksiz. Lecithin-based microemulsion of a peptide for oral administration: Preparation, characterization, and physical stability of the formulation. Drug Deliv. 13:19–24 (2006) doi:10.1080/10717540500313109.

    Article  PubMed  CAS  Google Scholar 

  10. D. J. Hauss, S. E. Fogal, J. V. Ficorilli, C. A. Price, T. Roy, A. A. Jayaraj, and J. J. Keirns. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 87:164–169 (1998) doi:10.1021/js970300n.

    Article  PubMed  CAS  Google Scholar 

  11. Z. Hu, R. Tawa, T. Konishi, N. Shibata, and K. Takada. A novel emulsifier, Labrasol, enhances gastrointestinal absorption of gentamicin. Life Sci. 69:2899–2910 (2001) doi:10.1016/S0024-3205(01)01375-3.

    Article  PubMed  CAS  Google Scholar 

  12. K. Itoh, S. Matsui, Y. Tozuka, T. Oguchi, and K. Yamamoto. Improvement of physicochemical properties of N-4472. Part II: characterization of N-4472 microemulsion and the enhanced oral absorption. Int. J. Pharm. 246:75–83 (2002) doi:10.1016/S0378-5173(02)00346-0.

    Article  PubMed  CAS  Google Scholar 

  13. H. J. Kim, K. A. Yoon, M. Hahn, E. S. Park, and S. C. Chi. Preparation and in vitro evaluation of self-microemulsifying drug delivery systems containing idebenone. Drug Dev. Ind. Pharm. 26:523–529 (2000) doi:10.1081/DDC-100101263.

    Article  PubMed  CAS  Google Scholar 

  14. S. Mori, A. Matsuura, Y. V. R. Prasad, and K. Takada. Studies on the intestinal absorption of low molecular weight heparin using saturated fatty acids and their derivatives as an absorption enhancer in rats. Biol. Pharm. Bull. 27:418–421 (2004) doi:10.1248/bpb.27.418.

    Article  PubMed  CAS  Google Scholar 

  15. H. Shen, and M. Zhong. Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin. J. Pharm. Pharmacol. 58:1183–1191 (2006) doi:10.1211/jpp.58.9.0004.

    Article  PubMed  CAS  Google Scholar 

  16. R. G. Strickley. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21:201–230 (2004) doi:10.1023/B:PHAM.0000016235.32639.23.

    Article  PubMed  CAS  Google Scholar 

  17. J. F. Cuiné, W. N. Charman, C. W. Pouton, G. A. Edwards, and C. J. H. Porter. Increasing the proportional content of surfactant (Cremophor EL) relative to lipid in self-emulsifying lipid-based formulations of danazol reduces oral bioavailability in beagle dogs. Pharm. Res. 24:748–757 (2007) doi:10.1007/s11095-006-9194-z.

    Article  PubMed  Google Scholar 

  18. S. Fernandez, V. Jannin, J. D. Rodier, N. Ritter, B. Mahler, and F. Carrière. Comparative study on digestive lipase activities on the self emulsifying excipient LabrasolÒ, medium chain glycerides and PEG esters. Biochim. Biophys. Acta. 1771:633–640 (2007).

    PubMed  CAS  Google Scholar 

  19. L. Sek, B. J. Boyd, W. N. Charman, and C. J. H. Porter. Examination of the impact of a range of pluronic surfactants on the in-vitro solubilisation behaviour and oral bioavailability of lipidic formulations of atovaquone. J. Pharm. Pharmacol. 58:809–820 (2006) doi:10.1211/jpp.58.6.0011.

    Article  PubMed  CAS  Google Scholar 

  20. J. F. Cuiné, C. L. McEvoy, W. N. Charman, C. W. Pouton, G. A. Edwards, H. Benameur, and C. J. H. Porter. Evaluation of the impact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J. Pharm. Sci. 97:995–1012 (2008) doi:10.1002/jps.21246.

    Article  PubMed  Google Scholar 

  21. A. Dahan, and A. Hoffman. Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs: Correlation with in vivo data and the relationship to intra-enterocyte processes in rats. Pharm. Res. 23:2165–2174 (2006) doi:10.1007/s11095-006-9054-x.

    Article  PubMed  CAS  Google Scholar 

  22. J. P. Reymond, and H. Sucker. In vitro model for ciclosporin intestinal absorption in lipid vehicles. Pharm. Res. 5:673–676 (1988) doi:10.1023/A:1015987223407.

    Article  PubMed  CAS  Google Scholar 

  23. L. Sek, C. J. H. Porter, and W. N. Charman. Characterisation and quantification of medium chain and long chain triglycerides and their in vitro digestion products, by HPTLC coupled with in situ densitometric analysis. J. Pharm. Biomed. Anal. 25:651–661 (2001) doi:10.1016/S0731-7085(00)00528-8.

    Article  PubMed  CAS  Google Scholar 

  24. N. H. Zangenberg, A. Müllertz, H. G. Kristensen, and L. Hovgaard. A dynamic in vitro lipolysis model II: Evaluation of the model. Eur. J. Pharm. Sci. 14:237–244 (2001) doi:10.1016/S0928-0987(01)00182-8.

    Article  PubMed  CAS  Google Scholar 

  25. C. J. H. Porter, A. M. Kaukonen, A. Taillardat-Bertschinger, B. J. Boyd, J. M. O’Connor, G. A. Edwards, and W. N. Charman. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: Studies with halofantrine. J. Pharm. Sci. 93:1110–1121 (2004) doi:10.1002/jps.20039.

    Article  PubMed  CAS  Google Scholar 

  26. C. J. H. Porter, A. M. Kaukonen, B. J. Boyd, G. A. Edwards, and W. N. Charman. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm. Res. 21:1405–1412 (2004) doi:10.1023/B:PHAM.0000036914.22132.cc.

    Article  PubMed  CAS  Google Scholar 

  27. A. Dahan, and A. Hoffman. The effect of different lipid based formulations on the oral absorption of lipophilic drugs: The ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur. J. Pharm. Biopharm. 67:96–105 (2007) doi:10.1016/j.ejpb.2007.01.017.

    Article  PubMed  CAS  Google Scholar 

  28. E. A. Gad Kariem, M. A. Abounassif, M. E. Hagga, and H. A. Al-Khamees. Photodegradation kinetic study and stability-indicating assay of danazol using high-performance liquid chromatography. J. Pharm. Biomed. Anal. 23:413–420 (2000) doi:10.1016/S0731-7085(00)00315-0.

    Article  CAS  Google Scholar 

  29. J. O. Christensen, K. Schultz, B. Mollgaard, H. G. Kristensen, and A. Mullertz. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur. J. Pharm. Sci. 23:287–296 (2004) doi:10.1016/j.ejps.2004.08.003.

    Article  PubMed  CAS  Google Scholar 

  30. N. H. Zangenberg, A. Müllertz, H. G. Kristensen, and L. Hovgaard. A dynamic in vitro lipolysis model I. Controlling the rate of lipolysis by continuous addition of calcium. Eur. J. Pharm. Sci. 14:115–122 (2001) doi:10.1016/S0928-0987(01)00169-5.

    Article  PubMed  CAS  Google Scholar 

  31. W. N. Charman, M. C. Rogge, A. W. Boddy, and B. M. Berger. Effect of food and a monoglyceride emulsion formulation on danazol bioavailability. J. Clin. Pharmacol. 33:381–386 (1993).

    PubMed  CAS  Google Scholar 

  32. V. H. Sunesen, R. Vedelsdal, H. G. Kristensen, L. Christrup, and A. Müllertz. Effect of liquid volume and food intake on the absolute bioavailability of danazol, a poorly soluble drug. Eur. J. Pharm. Sci. 24:297–303 (2005) doi:10.1016/j.ejps.2004.11.005.

    Article  PubMed  CAS  Google Scholar 

  33. S. I. F. Badawy, M. M. Ghorab, and C. M. Adeyeye. Characterization and bioavailability of danazol-hydroxypropyl b-cyclodextrin coprecipitates. Int. J. Pharm. 128:45–54 (1996) doi:10.1016/0378-5173(95)04214-8.

    Article  CAS  Google Scholar 

  34. V. Bakatselou, R. C. Oppenheim, and J. B. Dressman. Solubilization and wetting effects of bile-salts on the dissolution of steroids. Pharm. Res. 8:1461–1469 (1991) doi:10.1023/A:1015877929381.

    Article  PubMed  CAS  Google Scholar 

  35. R. L. Barbieri, and K. J. Ryan. Danazol: Endocrine pharmacology and therapeutic applications. Am. J. Obstet. Gynecol. 141:453–463 (1981).

    PubMed  CAS  Google Scholar 

  36. C. Y. Wu, and L. Z. Benet. Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22:11–23 (2005) doi:10.1007/s11095-004-9004-4.

    Article  PubMed  CAS  Google Scholar 

  37. M. Devani, M. Ashford, and D. Q. M. Craig. The emulsification and solubilisation properties of polyglycolysed oils in self-emulsifying formulations. J. Pharm. Pharmacol. 56:307–316 (2004) doi:10.1211/0022357022872.

    Article  PubMed  CAS  Google Scholar 

  38. T. R. Bates, and J. A. Sequeria. Bioavailability of micronized griseofulvin from corn oil-in-water emulsion, aqueous suspension, and commercial tablet dosage forms in humans. J. Pharm. Sci. 64:793–797 (1975) doi:10.1002/jps.2600640513.

    Article  PubMed  CAS  Google Scholar 

  39. H. H. Hölzer, C. M. Turkelson, T. E. Solomon, and H. E. Raybould. Intestinal lipid inhibits gastric-emptying via CCK and a vagal capsaicin-sensitive afferent pathway in rats. Am. J. Physiol. Gasterointest. Liver Physiol. 30:G625–G629 (1994).

    Google Scholar 

  40. F. Seeballuck, E. Lawless, M. B. Ashford, and C. M. O’Driscoll. Stimulation of triglyceride-rich lipoprotein secretion by polysorbate 80: In vitro and in vivo correlation using Caco-2 cells and a cannulated rat intestinal lymphatic model. Pharm. Res. 21:2320–2326 (2004) doi:10.1007/s11095-004-7684-4.

    Article  PubMed  CAS  Google Scholar 

  41. A. M. Kaukonen, B. J. Boyd, C. J. H. Porter, and W. N. Charman. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm. Res. 21:245–253 (2004) doi:10.1023/B:PHAM.0000016282.77887.1f.

    Article  PubMed  CAS  Google Scholar 

  42. FDA. Guidance for Industry: Extended release oral dosage forms: Development, evaluation, and application of in vitro/in vivo correlations. Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Rockville, MD, 1997.

Download references

Acknowledgments

Berith Friis and Gitte Frejlev Sørensen are gratefully acknowledged for their expert help with the animal studies. Mona Elstrer is acknowledged for her help with the danazol plasma analyzes, Freja Jacobsen is acknowledged for her help with solubility measurements and Tine Buskjær Nielsen for linguistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Müllertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, A., Holm, R., Pedersen, M.L. et al. Lipid-based Formulations for Danazol Containing a Digestible Surfactant, Labrafil M2125CS: In Vivo Bioavailability and Dynamic In Vitro Lipolysis. Pharm Res 25, 2769–2777 (2008). https://doi.org/10.1007/s11095-008-9641-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9641-0

KEY WORDS

Navigation