Skip to main content
Log in

Scaling Up the Spray Drying Process from Pilot to Production Scale Using an Atomized Droplet Size Criterion

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the possibility of producing identical powders in pilot and production scale spray drying equipment by matching the droplet size distributions produced by two differently sized atomizers.

Methods

Particles were prepared by spray drying solutions of acetaminophen and polyvinylpyrrolidone K-30. The success of the up-scaling was evaluated by comparing the powders in terms of particle size distribution (laser diffraction), crystallinity (XPRD) and morphology (SEM). Furthermore, the influence of process parameters on other product characteristics such as stability and residual volatile content was also evaluated.

Results

The spray drying experiments resulted in spherical, amorphous particles with volumetric median diameters of typically 4–10 μm for pilot scale and 4–30 μm for production scale. The results showed that particles with similar morphology and crystallinity could be produced in the two applied spray dryers. However, scale-up based purely on matching droplet size distributions was not feasible.

Conclusions

The scale-up criterion did not account for the differences between the droplet-drying gas mixing and residence time distribution within the two spray dryers. Therefore, production scale experiments are required in order to obtain similar product characteristics as in pilot scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Masters. Spray Drying Handbook. Longman Scientific & Technical, Essex, England, 1991.

    Google Scholar 

  2. P. Giunchedi, and U. Conte. Spray-drying as a preparation method of microparticulate drug-delivery systems: an overview. S. T. P. Pharm. Sci. 5:276–290 (1995).

    Google Scholar 

  3. S. Wendel, and M. Celik. An overview of spray-drying applications. Pharm. Technol. 21:124–144 (1997).

    Google Scholar 

  4. K. Masters. Spray Drying in Practice. SprayDryConsult International Aps, Charlottenlund, 2002.

    Google Scholar 

  5. M. Yoshioka, B. C. Hancock, and G. Zografi. Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J. Pharm. Sci. 84:983–986 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. A. A. Ambike, K. R. Mahadik, and A. Paradkar. Stability study of amorphous valdecoxib. Int. J. Pharm. 282:151–162 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. R. Chen, M. Tagawa, N. Hoshi, T. Ogura, H. Okamoto, and K. Danjo. Improved dissolution of an insoluble drug using a 4-fluid nozzle spray-drying technique. Chem. Pharm. Bull. 52:1066–1070 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. K. Khougaz, and S. D. Clas. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J. Pharm. Sci. 89:1325–1334 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. T. Matsumoto, and G. Zografi. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinylacetate) in relation to indomethacin crystallization. Pharm. Res. 16:1722–1728 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. G. Van den Mooter, M. Wuyts, N. Blaton, R. Busson, P. Grobet, P. Augustijns, and R. Kinget. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 12:261–269 (2001).

    Article  PubMed  Google Scholar 

  11. E. Esposito, R. Roncarati, R. Cortesi, F. Cervellati, and C. Nastruzzi. Production of eudragit microparticles by spray-drying technique: influence of experimental parameters on morphological and dimensional characteristics. Pharm. Dev. Technol. 5:267–278 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. Y. Maa, H. R. Costantino, P. Nguyen, and C. C. Hsu. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm. Dev. Technol. 2:213–223 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. P. Tewa-Tagne, G. Degobert, S. Briancon, C. Bordes, J. Y. Gauvrit, P. Lanteri, and H. Fessi. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs. Pharm. Res. 24:650–661 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. P. Johansen, H. P. Merkle, and B. Gander. Technological considerations related to the up-scaling of protein microencapsulation by spray-drying. Eur. J. Pharm. Biopharm. 50:413–417 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. R. P. Raffin, S. S. Guterres, A. R. Pohlmann, and M. I. Re. Powder characteristics of pantoprazole delivery systems produced in different spray-dryer scales. Drying Technol. 24:339–348 (2006).

    Article  CAS  Google Scholar 

  16. T. P. Foster, and M. W. Leatherman. Powder characteristics of proteins spray-dried from different spray-Dryers. Drug Dev. Ind. Pharm. 21:1705–1723 (1995).

    Article  CAS  Google Scholar 

  17. D. E. Walton. The morphology of spray-dried particles a qualitative view. Drying Technol. 18:1943–1986 (2000).

    Article  CAS  Google Scholar 

  18. M. Zlokarnik. Scale-up in Chemical Engineering. Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  19. Thybo, P., Andersen, S. K., Lindeløv, J. S., and Hovgaard, L. Droplet size measurements for spray dryer scale-up. Pharm. Dev. Technol. In Press.

  20. A. Billon, B. Bataille, G. Cassanas, and M. Jacob. Development of spray-dried acetaminophen microparticles using experimental designs. Int. J. Pharm. 203:159–168 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. M. M. de Villiers, D. E. Wurster, J. G. Van der Watt, and A. Ketkar. X-ray powder diffraction determination of the relative amount of crystalline acetaminophen in solid dispersions with polyvinylpyrrolidone. Int. J. Pharm. 163:219–224 (1998).

    Article  Google Scholar 

  22. T. Miyazaki, S. Yoshioka, Y. Aso, and S. Kojima. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J. Pharm. Sci. 93:2710–2717 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. M. Angberg, C. Nystrom, and S. Castensson. Evaluation of heat-conduction microcalorimetry in pharmaceutical stability studies.5. A new approach for continuous measurements in abundant water-vapor. Int. J. Pharm. 81:153–167 (1992).

    Article  CAS  Google Scholar 

  24. M. Angberg, C. Nystrom, and S. Castensson. Evaluation of heat-conduction microcalorimetry in pharmaceutical stability studies.6. Continuous monitoring of the interaction of water-vapor with powders and powder mixtures at various relative humidities. Int. J. Pharm. 83:11–23 (1992).

    Article  CAS  Google Scholar 

  25. K. Mosen, K. Backstrom, K. Thalberg, T. Schaefer, H. G. Kristensen, and A. Axelsson. Particle formation and capture during spray drying of inhalable particles. Pharm. Dev. Technol. 9:409–417 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. M. Haisa, S. Kashino, R. Kawai, and H. Maeda. The monoclinic form of p-hydroxyacetanilide. Acta Crystallogr. B32:1283–1285 (1976).

    CAS  Google Scholar 

  27. P. Thybo, J. Kristensen, and L. Hovgaard. Characterization and physical stability of tolfenamic Acid-PVP K30 solid dispersions. Pharm. Dev. Technol. 12:43–53 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. P. Di Martino, G. F. Palmieri, and S. Martelli. Molecular mobility of the paracetamol amorphous form. Chem. Pharm. Bull. 48:1105–1108 (2000).

    PubMed  Google Scholar 

Download references

Acknowledgments

The Drug Research Academy, GEA Pharmaceutical A/S, and Niro A/S are acknowledged for financial support. The authors would like to thank Matti Murtomaa and University of Turku for use of X-ray diffractometer and microcalorimeter. Mikko Tenho and Olli-Pekka Hämäläinen are greatly appreciated for their assistance in XRPD and isothermal microcalorimetry measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Thybo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thybo, P., Hovgaard, L., Lindeløv, J.S. et al. Scaling Up the Spray Drying Process from Pilot to Production Scale Using an Atomized Droplet Size Criterion. Pharm Res 25, 1610–1620 (2008). https://doi.org/10.1007/s11095-008-9565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9565-8

KEY WORDS

Navigation