Skip to main content

Advertisement

Log in

A Biodegradable pH-sensitive Micelle System for Targeting Acidic Solid Tumors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A new pH-sensitive micelle delivery system based on TAT cell penetrating peptide and biodegradable sulfonamide grafted disulfide polymer is presented. The system consists of two components: (1) A polymeric micelle made of Poly(l-lactic acid)-b-poly(ethylene glycol) (PLLA-b-PEG) conjugated to TAT (TAT-micelle), (2) A pH-sensitive diblock copolymer (poly(l-cystine bisamide-g-sulfadiazine))-b-PEG (PCBS-b-PEG). The anionic PCBS complexed with cationic TAT of TAT-micelles forms the final carrier. PCBS showed rapid degradation in the presence of cysteine. The TAT-micelles showed increase in particle size between pH 8.0 and 7.0 upon mixing with PCBS-b-PEG indicating complexation. As the pH was further decreased (pH 6.8 to 6.0) two populations were observed, one of normal TAT-micelles and the other of aggregated PCBS-b-PEG. Flow cytometry showed significantly higher uptake of TAT-micelles at pH 6.6 indicating deshielding compared to pH 7.4. The anticancer drug doxorubicin (DOX) was encapsulated into the TAT-micelles, and the in vitro cytotoxicity at different pHs was evaluated. The system was able to distinguish pHs 7.2 and 7.0 in terms of cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. S. Lee, K. Na, and Y. H. Bae. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release 91:103–113 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. S. K. Han, K. Na, and Y. H. Bae. Sulfonamide based pH-sensitive polymeric micelles: physicochemical characteristics and pH-dependent aggregation. Colloids Surf., A Physicochem. Eng. Asp. 214:49–59 (2003).

    Article  CAS  Google Scholar 

  3. D. E. Discher and A. Eisenberg. Polymer vesicles. Science 297:967–973 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. F. Ahmed and D. E. Discher. Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. J. Control. Release 96:37–53 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. I. Bala, S. Hariharan, and M. N. Kumar. PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev. Ther. Drug Carr. Syst. 21:387–422 (2004).

    Article  CAS  Google Scholar 

  6. J. Panyam and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55:329–347 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. M. Yokoyama, G. S. Kwon, T. Okano, Y. Sakurai, T. Seto, and K. Kataoka. Preparation of micelle-forming polymer-drug conjugates. Bioconjug. Chem. 3:295–301 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. K. Na, V. A. Sethuraman, and Y. H. Bae. Stimuli-sensitive polymeric micelles as anticancer drug carriers. Anticancer Agents Med. Chem. 6:525–535 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. S. R. Croy and G. S. Kwon. Polymeric micelles for drug delivery. Curr. Pharm. Des. 12:4669–4684 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. R. Kim. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103:1551–1560 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. N. R. Wardwell and P. P. Massion. Novel strategies for the early detection and prevention of lung cancer. Semin. Oncol. 32:259–268 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. T. Minko, S. S. Dharap, R. I. Pakunlu, and Y. Wang. Molecular targeting of drug delivery systems to cancer. Current Drug Targets 5:389–406 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. M. Richter and H. Zhang. Receptor-targeted cancer therapy. DNA Cell Biol. 24:271–282 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. C. I. Spiridon, S. Guinn, and E. S. Vitetta. A comparison of the in vitro and in vivo activities of IgG and F(ab′)2 fragments of a mixture of three monoclonal anti-Her-2 antibodies. Clin. Cancer Res. 10:3542–3551 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. S. P. Vyas, A. Singh, and V. Sihorkar. Ligand–receptor-mediated drug delivery: an emerging paradigm in cellular drug targeting. Crit. Rev. Ther. Drug Carr. Syst. 18:1–76 (2001).

    CAS  Google Scholar 

  16. V. A. Sethuraman and Y. H. Bae. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J. Control. Release 118:216–224 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. R. J. Christie and D. W. Grainger. Design strategies to improve soluble macromolecular delivery constructs. Adv. Drug Deliv. Rev. 55:421–437 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. M. Meyer and E. Wagner. pH-responsive shielding of non-viral gene vectors. Exp. Opin. Drug Deliv. 3:563–571 (2006).

    Article  CAS  Google Scholar 

  19. A. Nori, K. D. Jensen, M. Tijerina, P. Kopeckova, and J. Kopecek. Subcellular trafficking of HPMA copolymer-Tat conjugates in human ovarian carcinoma cells. J. Control. Release 91:53–59 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. L. Hyndman, J. L. Lemoine, L. Huang, D. J. Porteous, A. C. Boyd, and X. Nan. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J. Control. Release 99:435–444 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. S. Pujals, J. Fernandez-Carneado, C. Lopez-Iglesias, M. J. Kogan, and E. Giralt. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim. Biophys. Acta 1758:264–279 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. A. S. Ojugo, P. M. McSheehy, D. J. McIntyre, C. McCoy, M. Stubbs, M. O. Leach, I. R. Judson, and J. R. Griffiths. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous (19)F and (31)P probes. NMR Biomed. 12:495–504 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. M. Stubbs, P. M. McSheehy, J. R. Griffiths, and C. L. Bashford. Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today 6:15–19 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. W. Yu, K. F. Pirollo, A. Rait, B. Yu, L. M. Xiang, W. Q. Huang, Q. Zhou, G. Ertem, and E. H. Chang. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene. Ther. 11:1434–1440 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. G. M. Kim, Y. H. Bae, and W. H. Jo. pH-induced micelle formation of poly(histidine-co-phenylalanine)-block-poly(ethylene glycol) in aqueous media. Macromol. Biosci. 5:1118–1124 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. S. I. Kang and Y. H. Bae. pH-induced volume-phase transition of hydrogels containing sulfonamide side group by reversible crystal formation. Macromolecules 34:8173–8178 (2001).

    Article  CAS  Google Scholar 

  27. S. I. Kang and Y. H. Bae. pH-induced solubility transition of sulfonamide-based polymers. J. Control. Release 80:145–155 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. S. I. Kang, K. Na, and Y. H. Bae. Sulfonamide-containing polymers: a new class of pH-sensitive polymers and gels. Macromol. Symp. 172:149–156 (2001).

    Article  CAS  Google Scholar 

  29. Y. Zong, X. Wang, K. C. Goodrich, A. M. Mohs, D. L. Parker, and Z. R. Lu. Contrast-enhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor-bearing mice. Magn. Reson. Med. 53:835–842 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. A. Lucke, J. Tessmar, E. Schnell, G. Schmeer, and A. Gopferich. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. Biomaterials 21:2361–2370 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. K. Kataoka, A. Harada, and Y. Nagasaki. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47:113–131 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. V. A. Sethuraman and Y. H. Bae. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J. Control. Release 118:216–224 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. T. L. Kaneshiro, T. Ke, E. K. Jeong, D. L. Parker, and Z. R. Lu. Gd-DTPA L-cystine bisamide copolymers as novel biodegradable macromolecular contrast agents for MR blood pool imaging. Pharm. Res. 23:1285–1294 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. V. A. Sethuraman, K. Na, and Y. H. Bae. pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules 7:64–70 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. S. I. Kang and Y. H. Bae. A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J. Control. Release 86:115–121 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. D. C. Bibby, N. M. Davies, and I. G. Tucker. Poly(acrylic acid) microspheres containing beta-cyclodextrin: loading and in vitro release of two dyes. Int. J. Pharm. 187:243–250 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. C. Ramkissoon-Ganorkar, F. Liu, M. Baudys, and S. W. Kim. Modulating insulin-release profile from pH/thermosensitive polymeric beads through polymer molecular weight. J. Control. Release 59:287–298 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. N. Raghunand, R. A. Gatenby, and R. J. Gillies. Microenvironmental and cellular consequences of altered blood flow in tumours. Br. J. Radiol. 76(Spec No 1):S11-S22 (2003).

    Article  PubMed  Google Scholar 

  39. X. L. Yang and A. H. Wang. Structural studies of atom-specific anticancer drugs acting on DNA. Pharmacol. Ther. 83:181–215 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Core Facilities at the University of Utah for use of the Mass and NMR spectroscopy and flow cytometer. This work was supported by NIH CA122356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Han Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sethuraman, V.A., Lee, M.C. & Bae, Y.H. A Biodegradable pH-sensitive Micelle System for Targeting Acidic Solid Tumors. Pharm Res 25, 657–666 (2008). https://doi.org/10.1007/s11095-007-9480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9480-4

Key words

Navigation