Skip to main content

Advertisement

Log in

Antitumor Effect of Paclitaxel-Loaded PEGylated Immunoliposomes Against Human Breast Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The antitumor effect of paclitaxel-loaded PEGylated immunoliposome (PILs) was investigated in breast cancer cell lines and the xenograft model.

Methods

Herceptin was conjugated to paclitaxel-loaded PEGylated liposomes (PLs). In vitro cellular uptake and cytotoxicity of PILs were determined in breast cancer cell lines while in vivo antitumor efficacy was evaluated in the xenograft nude mouse model.

Results

The PILs formulation was able to significantly increase the HER2 mediated cellular uptake of paclitaxel compared to the PLs in cell lines overexpressing HER2 (BT-474 and SK-BR-3 cells). However, in the MDA-MB-231 cells, which express low levels of HER2, the difference between the PILs and PLs formulation was not significant. The biological activity of Herceptin was maintained throughout the conjugation process as exhibited by the antitumor dose–response curves determined for Herceptin itself, for the thiolated Herceptin alone and subsequently for the immunoliposome-coupled Herceptin. In BT-474 and SK-BR-3 cells, the cytotoxicity of the PILs was more potent than that of Taxol. Moreover, in in vivo studies, PILs showed significantly higher tumor tissue distribution of paclitaxel in the BT-474 xenograft model and more superior antitumor efficacy compared to Taxol and PLs. However, in the MDA-MB-231 xenograft model, PILs and PLs showed similar tumor tissue distribution as well as antitumor activity.

Conclusions

These results suggest that HER2-mediated endocytosis is involved in the PILs formulation. The ability of the PILs formulation to efficiently and specifically deliver paclitaxel to the HER2-overexpressing cancer cells implies that it is a promising strategy for tumor-specific therapy for HER2-overexpressing breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CHOL:

cholesterol

DMEM:

Dulbecco’s modified eagle medium

EPR:

enhanced permeability and retention

FBS:

fetal bovine serum

HER2:

human epidermal growth factor receptor-2

MEM:

minimum essential medium

MPEG2000-DSPE:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine [methoxy(polyethyleneglycol)-2000]

MTT:

3-(4,5-dimethylthiazol-2-ly)– 2,5-diphenyl-tetrazolium bromide

PBS:

phosphate-buffered saline

PEG:

polyethylene glycol

PILs:

PEGylated immunoliposomes

PLs:

PEGylated liposomes

S100PC:

soybean phosphatidylcholine

Rh-PE:

rhodamine labeled-phosphatidylethanolamine

References

  1. T. Yamamoto, S. Ikawa, T. Akiyama, K. Semba, N. Nomura, N. Miyajima, T. Saito, and K. Toyoshima. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature 319:230–240 (1986).

    Article  PubMed  CAS  Google Scholar 

  2. C. I. Bargmann, M. C. Hung, and R. A. Weinberg. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319:226–230 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. M. Tan, J. Yao, and D. Yu. Overexpression of the c-erbB-2 gene enhanced intrinsic metastasispotential in human breast cancer cells without increasing their transformation abilities. Cancer Res. 57:1199–1205 (1997).

    PubMed  CAS  Google Scholar 

  4. G. N. Hortobagyi. Treatment of breast cancer. N. Engl. J. Med. 339:974–984 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. M. Toi, K. Horiguchi, H. Bando, S. Saji, and L. W. C. Chow. Trastuzumab: updates and future issues. Cancer Chemother. Pharmacol. 56:s94–s99 (2005).

    Article  CAS  Google Scholar 

  7. P. Carter, L. Presta, C. M. Gorman, J. B. Ridgway, D. Henner, and W. L. Wong. Humanization of an anti-p185her2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 89:4285–4289 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. J. Baselga, D. Tripathy, J. Mendelsohn, S. Baughman, C. C. Benz, L. Dantis, N. T. Sklarin, A. D. Seidman, C. A. Hudis, J. Moore, P. P. Rosen, T. Twaddell, I. C. Henderson, and L. Norton. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14:737–744 (1996).

    PubMed  CAS  Google Scholar 

  9. M. A. Cobleigh, C. L. Vogel, D. Tripathy, N. J. Robert, S. Scholl, L. Fehrenbacher, J. M. Wolter, V. Paton, S. Shak, G. Lieberman, and D. J. Slamon. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in woman who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17:2639–2648 (1999).

    PubMed  CAS  Google Scholar 

  10. D. J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde, T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga, and L. Norton. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cnacer that overexpresses HER2. N. Engl. J. Med. 344:783–792 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. E. K. Rowinsky, and R. C. Donehower. Paclitaxel (Taxol). N. Engl. J. Med. 332:1004–1014 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. T. M. Mekhail, and M. Markman. Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 3:755–766 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. A. M. Yvon, P. Wadsworth, and M. A. Jordan. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Bio. Cell 10:947–959 (1999).

    CAS  Google Scholar 

  14. A. Goncalves, D. Braguer, K. Kamath, L. Martello, C. Briand, S. Horwitz, L. Wilson, and M. A. Jordan. Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc. Natl. Acad. Sci. USA 98:11737–11742 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. M. A. Jordan, and L. Wilson. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4:253–265 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. M. D. Pegram, A. Lopez, G. Konecny, and D. J. Slamon. Trastuzumab and chemotherapeutics: drug interactions and synergies. Semin. Oncol. 27(6 Suppl 11):21–25 (2000).

    PubMed  CAS  Google Scholar 

  17. V. Dieras, P. Beuzeboc, V. Laurence, J. Y. Pierga, and P. Pouillart. Interaction between Herceptin and taxanes. Oncology 61(Suppl 2):43–49 (2001).

    PubMed  Google Scholar 

  18. S. Suzuki, S. Watanabe, T. Masuko, and Y. Hashimoto. Preparation of long-circulating immunoliposomes containing adriamycin by a novel method to coat immunoliposomes with polyethylene glycol. Biochem. Biophys. Acta 1245:22–29 (1995).

    Google Scholar 

  19. S. M. Nam, H. S. Kim, W. S. Ahn, and Y. S. Park. Sterically stabilized anti-G(M3), anti-Le(x) immunoliposomes: targeting to B16BL6, HRT-18 cancer cells. Oncol. Res. 11:9–16 (1999).

    PubMed  CAS  Google Scholar 

  20. G. Pagnan, P. G. Montaldo, F. Pastorino, L. Raffaghello, M. Kirchmeier, and T. M. Allen. GD2-mediated melanoma cell targeting and cytotoxicity of liposome-entrapped fenretinide. Int. J. Cancer 81:268–274 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. K. R. Reddy. Controlled-release, pegylation, liposomal formulation: new mechanisms in the delivery of injectable drugs. Drug Deliv. 34:915–923 (2000).

    CAS  Google Scholar 

  22. J. W. Park, K. Hong, D. B. Kirpotin, D. Papahadjopoulos, and C. C. Benz. Immunoliposomes for cancer treatment. Adv. Pharmacol. 40:399–435 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. J. S. Chen, K. L. Lan, and M. C. Hung. Strategies to target HER2/neu overexpression for cancer therapy. Drug Resist. Updat. 6:129–136 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. J. W. Park, K. Hong, P. Carter, H. Asgari, L. Y. Guo, G. A. Keller, C. Wirth, R. Shalaby, C. Kotts, W. I. Wood, D. Papahadjopoulos, and C. C. Benz. Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc. Natl. Acad. Sci. USA 92:1327–1331 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. T. Yang, M. K. Choi, F. D. Cui, J. S. Kim, S. J. Chung, C. K. Shim, and D. D. Kim. Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J. Control. Release 120:169–177 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. T. Yang, F. D. Cui, M. K. Choi, J. W. Cho, S. J. Chung, C. K. Shim, and D. D. Kim. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int. J. Pharm. 338:317–326 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. U. B. Nielsen, D. B. Kirpotin, E. M. Pickering, K. Hong, J. W. Park, M. R. Shalaby, Y. Shao, C. C. Benz, and J. D. Marks. Therapeutic efficacy of anti-ErbB2 immnoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta 1591:109–118 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. C. Fonseca, J. N. Moreira, C. J. Ciudad, M. C. Pedroso de Lima, and S. Simões. Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. Eur. J. Pharm. Biopharm. 59:359–366 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. K. Laginha, D. Mumbengegwi, and T. Allen. Liposomes targeted via two different antibodies: assay, B-cell binding and cytotoxicity. Biochim. Biophys. Acta 1711:25–32 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. P. R. Twentyman, and M. Luscombe. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer 56:279–285 (1987).

    PubMed  CAS  Google Scholar 

  31. A. Sharma, U. S. Sharma, and R. M. Straubinger. Paclitaxel-liposomes for intracavity therapy of intraperitoneal P388 leukemia. Cancer Lett. 107:265–272 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. C. X. Wang, D. C. Koay, A. Edwards, Z. Lu, G. Mor, I. T. Ocal, and M. P. DiGiovanna. In vitro and in vivo effects of combination of trastuzumab (Herceptin) and tamoxifen in breast cancer. Breast Cancer Res. Treat. 92:251–263 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. N. Maeda, Y. Takeuchi, M. Takada, Y. Sadzuka, Y. Namba, and N. Oku. Anti-neovascular therapy by use of tumor neovasculature-targeted long-circulating liposome. J. Control. Release 100:41–52 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. M. Owais, and C. M. Gupta. Liposome-mediated cytosolic delivery of macromolecules and its possible use in vaccine development. Eur. J. Biochem. 267:3946–3956 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. S. C. Semple, A. Chonn, and P. R. Cullis. Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry 35:2521–2525 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. M. C. Woodle. Controlling liposomal blood clearance by surface-grafted polymers. Adv. Drug Deliv. Rev. 32:139–152 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. Y. P. Hu, N. Henry-Toulme, and J. Robert. Failure of liposomal encapsulation of doxorubicin to circumvent multidrug resistance in an in vitro model of rat glioblastroma cells. Eur. J. Cancer 31:389–394 (1995).

    Article  Google Scholar 

  38. M. L. Immordino, P. Brusa, S. Arpicco, B. Stella, F. Dosio, and L. Cattel. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing decetaxel. J. Control. Release 91:417–429 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. P. Crosasso, M. Ceruti, P. Brusa, S. Arpicco, and L. Cattel. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J. Control. Release 63:19–30 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. P. Carter. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer Nov1:118–129 (2001).

    Article  CAS  Google Scholar 

  41. R. J. Pietras, B. M. Fendly, V. R. Chazin, M. D. Pegram, S. B. Howell, and D. J. Slamon. Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 9:1829–1838 (1994).

    PubMed  CAS  Google Scholar 

  42. J. Baselga, L. Norton, J. Albanell, Y. M. Kim, and J. Mendelsohn. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 58:2825–2831 (1998).

    PubMed  CAS  Google Scholar 

  43. A. Ito, Y. Kuga, H. Honda, H. Kikkawa, A. Horiuchi, Y. Watanabe, and T. Kobayashi. Magnetic nanoparticle-loaded anti-immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett. 212:167–175 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. F. Valeriote, and H. Lin. Synergistic interaction of anticancer agents: a cellular perspective. Cancer Chemother. Rep. 59:895–900 (1975).

    PubMed  CAS  Google Scholar 

  45. U. Massing, and S. Fuxius. Liposomal formulations of anticancer drugs: selectivity and effectiveness. Drug Resist. Updat. 3:171–177 (2003).

    Article  Google Scholar 

  46. E. Mastrobattista, G. A. Koning, and G. Storm. Immunoliposomes for the targeted delivery of anticancer drugs. Adv. Drug Deliv. Rev. 40:103–127 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Science and Technology (M10528010004-06N2801-00410) in Korea. The authors would like to thank the Lipoid GmbH (Germany) and Genentech companies for providing phosphatidylcholine and Herceptin, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Duk Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Choi, MK., Cui, FD. et al. Antitumor Effect of Paclitaxel-Loaded PEGylated Immunoliposomes Against Human Breast Cancer Cells. Pharm Res 24, 2402–2411 (2007). https://doi.org/10.1007/s11095-007-9425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9425-y

Key words

Navigation