Skip to main content
Log in

Comparative Physicochemical Characterization of Phospholipids Complex of Puerarin Formulated by Conventional and Supercritical Methods

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to compare the physicochemical characteristics of the phospholipids complex of puerarin (Pur) prepared by traditional methods (solvent evaporation, freeze-drying and micronization) and a supercritical fluid (SCF) technology. The physicochemical properties of the pure drug and the corresponding products prepared by two different SCF methods were also compared.

Methods

Solid-state characterization of particles included differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), solubility, dissolution rate and scanning electron microscopy (SEM) examinations. Besides puerarin phospholipids complex (PPC) by four different methods, the solid-state properties of unprocessed, gas antisolvent (GAS) crystallized and solution enhanced dispersion by supercritical fluid (SEDS) precipitated puerarin samples were also compared. Crystallinity was assessed using DSC and XRPD. Drug-phospholipids interactions were characterized using Fourier transform infrared spectroscopy (FTIR). SEM was used to determine any morphological changes. Pharmaceutical performance was assessed in dissolution rate and solubility tests.

Result

The results of the physical characterization attested a substantial correspondence of the solid state of the drug before and after treatment with GAS technique, whereas a pronounced change in size and morphology of the drug crystals was noticed. The GAS-processed puerarin exhibited a better crystal shape confirmed by DSC, XRPD and IR. Polymorphic change of puerarin during SEDS coupled with the dramatic reduction of the dimensions determined a remarkable enhancement of its solubility and in vitro dissolution rate. Phospholipids complex prepared using supercritical fluid technology showed similar properties of physical state, thermal stability and molecular interaction with phospholipids (PC) to those of corresponding systems prepared by other three conventional methods namely solvent evaporation, freeze-drying and micronization as proved by XRPD, DSC, and FTIR. The best dissolution rate was obtained by SEDS-prepared complex, while the highest solubility was obtained for solvent evaporation method.

Conclusion

Supercritical fluid technology for the preparation of puerarin and its phospholipids complex has been proven to have significant advantages over the solvent evaporation technique and other conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Co:

drug concentration in medium

Cs:

saturated concentration in the diffused layer

D:

diffusion coefficient

DSC:

differential scanning calorimetry

EC:

ethyl cellulose

FD-PPC:

puerarin phospholipids complex prepared by freeze-drying method

FTIR:

Fourier transform infrared spectroscopy

GAS:

gas antisolvent

GAS-PC:

phospholipids prepared by GAS method

GAS-Pur:

puerarin prepared by GAS method

H:

diffusion layer thickness

MPPC:

puerarin phospholipids complex prepared by micronization method

PC:

phospholipids

PEG:

poly ethylene glycol

PLA:

poly lactic acid

PM:

physical mixture of puerarin and phospholipids

PPC:

puerarin phospholipids complex

Pur:

puerarin

PVP:

polyvinyl pyrrolidone

RESS:

rapid expansion of supercritical solution

S:

surface area

SAS:

supercritical antisolvent precipitation

SC-CO2 :

supercritical CO2

SCF:

supercritical fluid

SEDS:

solution enhanced dispersion by supercritical fluid

SEM:

scanning electron microscopy

SEDS-PC:

phospholipids prepared by SEDS method

SEDS-PPC:

puerarin phospholipids complex prepared by SEDS method

SEDS-Pur:

puerarin prepared by SEDS method

SE-PPC:

puerarin phospholipids complex prepared by solvent evaporation method

UV:

ultra violet

V:

medium volume

XRPD:

X-ray powder diffraction

References

  1. L. P. Ruan, S. Chen, B. Y. Yu, D. N. Zhu, G. A. Cordell, and S. X. Qiu. Prediction of human absorption of natural compounds by the non-everted rat intestinal sac model. Eur. J. Med. Chem. 41:605–610 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. J. Wang, M. Ji, W. Y. Hua, and D. Z. Dai. Development of puerarin. Prog. Pharm. Sci. 27:70–73 (2003).

    CAS  Google Scholar 

  3. Q. L. Zhu, and X. R. Lv. The pharmacology and clinical application of Puerarin. Chin. Trad. Herb. Drugs. 28:693–696 (1997).

    Google Scholar 

  4. F. Lili, D. O. Keefe, and Jr. W. J. Powell. The effect of Puerarin on the regional coronary blood flow and heart arterial blood flow dynamics of the acute myocardial ischemia dogs. Acta. Pharm. Sin. 19:801–807 (1984).

    Google Scholar 

  5. Z. H. Wu, Y. Q. Zu, H. Y. Yan, and G. Chen. The study on the solubility of Puerarin and the solubilizing effect of macromolecule polymers on it. Chin. Trad. Herb. Drugs. 30:88–89 (1999).

    Google Scholar 

  6. J. P. Guo, and T. Y. Zhao. The study on the in vitro dissolution of Pueraria flavones dripping pill. Chin. Trad. Herb. Drugs. 26:298–299 (1995).

    CAS  Google Scholar 

  7. X. L. Jin, and X. Y. Zhu. Pharmacokinetics of puerarin in rats, rabbits and dogs. Acta. Pharm. Sin. 13:284–288 (1992).

    CAS  Google Scholar 

  8. X. L. Jin, G. F. Chen, and X. Y. Zhu. Pharmacokinetics of puerarin in healthy volunteers. Chin. J. Clin. Pharmacol. 7:115–118 (1991).

    CAS  Google Scholar 

  9. M. Lu, N. Li, D. P. Meng, Y. R. Guo, and Y. H. Chen. Study on the pharmacokinetics of puerarin in patients with diabetic nephropathy. Chin. J. Hosp. Pharm. 20:18–720 (2000).

    Google Scholar 

  10. J. K. Prasain, K. Jones, N. Brissie, R. Moore, J. M. Wyss, and S. Barnes. Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry. J. Agric. Food. Chem. 52:3708–3712 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. A. L. Simons, M. Renouf, S. Hendrich, and P. A. Murphy. Human gut microbial degradation of flavonoids: Structure–function relationship. J. Agric. Food Chem. 53:4258–4263 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. D. J. Zhou, H. Y. Zhao, and Y. L. Yang. The absorption of puerarin in rats’ intestines. J. Beijing Univ. Chem. Tech. 33:106–108 (2006).

    CAS  Google Scholar 

  13. D. O. Thompson. Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 14: 104–106 (1997).

    Google Scholar 

  14. M. Bialecka. The Effect of bioflavonoids and lecithin on the course of experimental atherosclerosis in rabbits. Annu. Acad. Med. Stein. 43:41–43 (1997).

    CAS  Google Scholar 

  15. N. I. Payne, R. F. Cosgrove, A. P. Green, and L. Liu. In vivo studies of amphotericin B liposomes derived from proliposomes: effect of formulation on toxicity and tissue disposition of the drug in mice. J. Pharm. Pharmacol. 39:24–28 (1987).

    PubMed  CAS  Google Scholar 

  16. S. Kimura. Solubilization of dolichol with lipids. JP. Patent No. 61,194,024 (1986).

  17. E. Bombardelli, G. Patri, and R. Pozzi. Complexes of saponins and their aglycons with phospholipids and pharmaceutical and cosmetic compositions containing them. US Patent No. 5, 166,139 (1992).

  18. Y. N. Jiang, H. Y. Mo, and J. M. Chen. Study on pharmacokinetic of herba epimeddi total flavonoids and their phytosomes in rats. Chin. J. Hosp. Pharm. 22:582–585 (2002).

    Google Scholar 

  19. J. M. Wu, D. W. Chen, and R. H. Zhang. Study on the bioavailability of PPC by using HPLC. Biomed. Chromatogr. 13:493–495 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. T. Khazaeinia, and F. Jamili. A comparision of gastrointestinal permeability induced by diclofenac–phospholipid complex with diclofenac acid and its sodium salt. J. Pharm. Pharm. Sci. 6:351–358 (2003).

    CAS  Google Scholar 

  21. S. A. Elkheshen, O. A. Sammour, M. H. A1-Shaboury, and B. T. A1-Quadeib. Enhancement of dissolution and bioavailability of piroxicam via solid dispersion with phospholipid. B. Faculty Pharm. 39:309–320 (2001).

    CAS  Google Scholar 

  22. Y. Li, W. S. Pan, S. L. Chen, H. X. Xu, D. J. Yang, and S. C. Chan. Pharmacokinetic, tissue distribution, and excretion of puerarin and puerarin–phospholipid complex in rats. Drug. Dev. Ind. Pharm. 32:413–422 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Li, W. S. Pan, S. L. Chen, D. J. Yang, S. C. Chan, and H. X. Xu. Studies on preparation of puerarin phytosomes and their solid dispersions. Chin. Pharm. J. 37:695–697 (2006).

    CAS  Google Scholar 

  24. M Perrut, J. Jung, and F. Leboeuf. Enhancement of dissolution rate of pooly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles. Int. J. Pharm. 288:3–10 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. E. Reverchon, G. Della Porta, and M. G. Failivene. Progress parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation. J. Supercrit. Fluids. 17:239–248 (2000).

    Article  CAS  Google Scholar 

  26. B. Warwick, F. Dehghani, N. R. Foster, J. R. Biffin, and H. L. Regtop. Synthesis, purification, and micronization of pharmaceuticals using the gas antisolvent technique. Ind. Eng. Chem. Res. 39:4571–4573 (2000).

    Article  CAS  Google Scholar 

  27. M. Moneghini, I. Kikic, D. Voinovich, B. Perissutti, P. Alessi, A. Cortesi, F. Princivalle, and D. Solinas. Study of solid state of carbamazepine after processing with gas anti-solvent technique. Eur. J. Pharm. Biopharm. 56:281–289 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. E. Badens, C. Magnan, and G. Charbit. Microparticles of soy lecithin formed by supercritical process. Biotechnol. Bioeng. 72:194–204 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. E. Rodier, H. Lochard, M. Sauceau, J. Letourneau, B. Freiss, and J. Fages. A three step supercritical process to improve the dissolution rate of Eflucimibe. Eur. J. Pharm. Sci. 26:184–193 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. S. Sethia, and E. Squillante. Physicochemical characterization of solid dispersion of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J. Pharm. Sci. 91:1948–1957 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. N. Elvassore, A. Bertucco, and P. Caliceti. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide)(PEG/PLA) nanoparticles by gas antisolvent techniques. J. Pharm. Sci. 90:1628–1636 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. R. Ghaderi, P. Artursson, and J. Carlfors. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm. Res. 16:676–681 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. A. R. C. Duarte, M. S. Costa, A. L. Simplicio, M. M. Cardoso, and C. M. M. Duarte. Preparation of controlled release microspheres using supercritical fluid technology for delivery of anti-inflammatory drugs. Int. J. Pharm. 308:168–174 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. E. Reverchon, and I. D. Marco. Supercritical antisolvent micronization of Cefonicid: thermodynamic interpretation of results. J. Supercrit. Fluids. 31:207–215 (2004).

    Article  CAS  Google Scholar 

  35. W. K. Snavely, B. Subramaniam, R. A. Rajewski, and M. R. Defelippis. Micronization of insulin from halogenated alcohol solution using supercritical carbon dioxide as an antisolvent. J. Pharm. Sci. 91:2026–2038 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. O. I. Corrigan, and A. M. Crean. Comparative physicochemical properties of hydrocortisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying. Int. J. Pharm. 245:75–82 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. P. Pathak, M. J. Meziani, T. Desai, and Y. P. Sun. Nanosizing drug particles in supercritical fluid processing. J. Am. Chem. Soc. 126:10842–10843 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. M. J. Meziani, P. Pathak, R. Hurezeanu, M. C. Thies, R. M. Enick, and Y. P. Sun. Supercritical-fluid processing technique for nanoscale polymer particles. Angew. Chem. Int. Ed. 43:704–707 (2004).

    Article  CAS  Google Scholar 

  39. J. H. Kim, T. E. Paxton, and D. L. Tomasko. Microencapsulation of naproxen using rapid expansion of supercritical solutions. Biotechnol. Prog. 12:650–661 (1996).

    Article  CAS  Google Scholar 

  40. Y. L. Wang, D. G. Wei, R. Dave, R. Pfeffer, M. Sauceau, J. J. Letourneau, and J. Fages. Extraction and precipitation particles coating using supercritical CO2. Powder. Technol. 127:32–44 (2002).

    Article  CAS  Google Scholar 

  41. K. X. Chen, X. Y. Zhang, J. Pan, and W. H. Yin. Recrystallization of andrographolide using the supercritical fluid antisolvent process. J. Cryst. Growth. 274:226–232 (2005).

    Article  CAS  Google Scholar 

  42. C. Magnan, E. Badens, N. Commenges, and G. Charbit. Soy lecithin micronization by precipitation with a compressed fluid antisolvent-influence of process parameters. J. Supercrit. Fluids. 19:69–77 (2000).

    Article  CAS  Google Scholar 

  43. S. Bristow, T. Shekunov, B. Y. Shekunov, and P. York. Analysis of the supersaturation and precipitation process with supercritical CO2. J. Supercrit. Fluids. 21:257–271 (2001).

    Article  CAS  Google Scholar 

  44. M. Rehman, B. Y. Shekunov, P. York, and P. Colthorpe. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide. J. Pharm. Sci. 90:1570–1582 (2001).

    Article  PubMed  CAS  Google Scholar 

  45. J. Fages, H. Lochard, J. J. Letourneau, M. Sauceau, and E. Rodier. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder. Technol. 141:219–226 (2004).

    Article  CAS  Google Scholar 

  46. D. Y. Sang, M. S. Kim, and J. C. Lee. Recrystallization of sulfathiazole and chlorpropamide using the supercritical fluid antisolvent process. J. Supercrit. Fluids. 25:143–154 (2003).

    Article  Google Scholar 

  47. M. Charoenchaitrakool, F. Dehghani, and N. R. Foster. Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-β-cyclodextrin. Int. J. Pharm. 239:103–112 (2002).

    Article  PubMed  CAS  Google Scholar 

  48. T. M. Martin, N. Bandi, R. Shulz, C. B. Roberts, and U. B. Kompella. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology. AAPS. PharmSciTech. 3:1–11 (2002).

    Article  Google Scholar 

  49. G. X. Zhai. The research on puerarin phospholipids solid dispersion. Shenyang Pharmaceutical University Thesis. 37–38.

  50. W. Li, Y. Y. Shao, G. D. Huang, and L. X. Hu. The purifying and TG–DTA–DTG thermal analysis of the lecithin. Sci. Tech. Food. Ind. 22:9–11 (2001).

    CAS  Google Scholar 

  51. S. Sethia, and E. Squillante. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int. J. Pharm. 272:1–10 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Q. H. Wang, Y. Y. Feng, S. L. Yang, and L. F. Chen. Study on the phospha-tidycholine by means of infrared and ultraviolet spectroscopy. J. Nanjing Normal Univ. (Nat. Sci. Ed.). 17:51–53 (1994).

    Google Scholar 

  53. Y. Han, Y. Zhou, and Y. F. Zhao. The purification and the identification of lecithin and its application. Amino Acids Biotic. Res. 23:28–31 (2001).

    Google Scholar 

  54. J. M. Wu, and D. W. Chen. Study on the physico-chemical properties of baicalin-phospholipid complex. Chin. Pharm. J. 36:173–177 (2001).

    CAS  Google Scholar 

  55. D. J. Jarmer, C. S. Lengsfeld, K. S. Anseth, and T. W. Randolph. Supercritical fluid crystallization of griseofulvin: Crystal habit modification with a selective growth inhibitor. J. Pharm. Sci. 94:2688–2702 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yang, DJ., Chen, SL. et al. Comparative Physicochemical Characterization of Phospholipids Complex of Puerarin Formulated by Conventional and Supercritical Methods. Pharm Res 25, 563–577 (2008). https://doi.org/10.1007/s11095-007-9418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9418-x

Key words

Navigation