Skip to main content
Log in

Alginate/Chitosan Nanoparticles are Effective for Oral Insulin Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the pharmacological activity of insulin-loaded alginate/chitosan nanoparticles following oral dosage in diabetic rats.

Methods

Nanoparticles were prepared by ionotropic pre-gelation of an alginate core followed by chitosan polyelectrolyte complexation. In vivo activity was evaluated by measuring the decrease in blood glucose concentrations in streptozotocin induced, diabetic rats after oral administration and flourescein (FITC)-labelled insulin tracked by confocal microscopy.

Results

Nanoparticles were negatively charged and had a mean size of 750 nm, suitable for uptake within the gastrointestinal tract due to their nanosize range and mucoadhesive properties. The insulin association efficiency was over 70% and insulin was released in a pH-dependent manner under simulated gastrointestinal conditions. Orally delivered nanoparticles lowered basal serum glucose levels by more than 40% with 50 and 100 IU/kg doses sustaining hypoglycemia for over 18 h. Pharmacological availability was 6.8 and 3.4% for the 50 and 100 IU/kg doses respectively, a significant increase over 1.6%, determined for oral insulin alone in solution and over other related studies at the same dose levels. Confocal microscopic examinations of FITC-labelled insulin nanoparticles showed clear adhesion to rat intestinal epithelium, and internalization of insulin within the intestinal mucosa.

Conclusion

The results indicate that the encapsulation of insulin into mucoadhesive nanoparticles was a key factor in the improvement of its oral absorption and oral bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Delie and M. J. Blanco-Prieto. Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules 10:65–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. A. des Rieux, V. Fievez, M. Garinot, Y.-J. Schneider, and V. Preat. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 116:1–27 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. S. A. Galindo-Rodriguez, E. Allémann, H. Fassi, and E. Doelker. Polymeric nanoparticles for oral delivery of drugs and vacines: A critical evaluation of in vivo studies. Crit. Rev. Ther. Drug 22:419–463 (2005).

    CAS  Google Scholar 

  4. A. Florence. The oral absorption of micro- and nanoparticulates: Neither exceptional nor unusual. Pharm. Res. 14:259–266 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. M. Morishita and N. A. Peppas. Is the oral route possible for peptide and protein drug delivery? Drug Discov. Today 11:905–910 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. M. Bendayan, E. Ziv, D. Gingras, R. Ben-Sasson, H. Bar-On, and M. Kidron. Biochemical and morpho-cytochemical evidence for the intestinal absorption of insulin in control and diabetic rats. Comparison between the effectiveness of duodenal and colon mucosa. Diabetologia 37:119–126 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. E. Ziv and M. Bendayan. Intestinal absorption of peptides through the enterocytes. Microsc. Res. Tech. 49:346–352 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. A. Fasano. Innovative strategies for the oral delivery of drugs and peptides. Trends Biotechnol. 16:152–157 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. H. Pinto-Alphandary, M. Aboubakar, D. Jaillard, P. Couvreur, and C. Vauthier. Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm. Res. 20:1071–1084 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. O. Borges, A. Cordeiro-da-Silva, S. G. Romeijn, M. Amidi, A. de Sousa, G. Borchard, and H. E. Junginger. Uptake studies in rat Peyer’s patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. J. Control. Release 114:348–358 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. N. Hussain, V. Jaitley, and A. T. Florence. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 50:107–142 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. M. G. Qaddoumi, H. J. Gukasyan, J. Davda, V. Labhasetwar, K. J. Kim, and V. H. Lee. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol. Vis. 9:559–568 (2003).

    PubMed  CAS  Google Scholar 

  13. T. Jung, W. Kamm, A. Breitenbach, E. Kaiserling, J. X. Xiao, and T. Kissel. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 50:147–160 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. H. S. Yoo and T. G. Park. Biodegradable nanoparticles containing protein–fatty acid complexes for oral delivery of salmon calcitonin. J. Pharm. Sci. 93:488–495 (2004).

    Article  CAS  Google Scholar 

  15. W. Tiyaboonchai, J. Woiszwillo, R. C. Sims, and C. R. Middaugh. Insulin containing polyethylenimine-dextran sulfate nanoparticles. Int. J. Pharm. 255:139–151 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. W. R. Gombotz and S. F. Wee. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31:267–285 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. L. Ilium. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15:1326–1331 (1998).

    Article  Google Scholar 

  18. L. Illum, N. F. Farraj, and S. S. Davis. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res. 11:1186–1189 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. P. Artursson. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11:1358–1361 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. M. Prabaharan and J. F. Mano. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 12:41–57 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. B. Sarmento, A. J. Ribeiro, F. Veiga, D. C. Ferreira, and R. J. Neufeld. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J. Nanosci. Nanotechnol. 7:2833–2841 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. M. van de Weert, W. E. Hennink, and W. Jiskoot. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17:1159–1167 (2000).

    Article  PubMed  Google Scholar 

  23. C. Damge, H. Vrancks, P. Balschmidt, and P. Couvreur. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. J. Pharm. Sci. 86:1407–1500 (1997).

    Article  Google Scholar 

  24. G. P. Carino, J. S. Jacob, and E. Mathiowitz. Nanosphere based oral insulin delivery. J. Control. Release 65:261–269 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. X. Y. Ma, G. M. Pan, Z. Lu, J. S. Hu, J. Z. Bei, J. H. Jia, and S. G. Wang. Preliminary study of oral polylactide microcapsulated insulin in vitro and in vivo. Diabetes Obes. Metab. 2:243–250 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. B. Sarmento, D. C. Ferreira, L. Jorgensen, and M. van de Weert. Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur. J. Pharm. Biopharm. 65:10–17 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. T. K. Tugrul. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16:351–380 (1995).

    Article  Google Scholar 

  28. X. Cao, S. Gibbs, L. Fang, H. Miller, C. Landowski, H.-C. Shin, H. Lennernas, Y. Zhong, G. Amidon, L. Yu, and D. Sun. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23:1675–1686 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. M. M. Lerco, C. T. Spadella, and J. L. M. Machado. Experimental alloxan diabetes-induced: a model for clinical and laboratory studies in rats. Acta Cir. Bras. 18:132–142 (2003).

    Article  Google Scholar 

  30. B. Sarmento, A. Ribeiro, F. Veiga, and D. Ferreira. Development and validation of a rapid reversed-phase HPLC method for the determination of insulin from nanoparticulate systems. Biomed. Chromatogr. 20:898–903 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. G. Coppi, V. Iannuccelli, E. Leo, M. T. Bernabei, and R. Cameroni. Protein immobilization in crosslinked alginate microparticles. J. Microencapsul. 19:37–44 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. G. W. Vandenberg and J. De La Noue. Evaluation of protein release from chitosan-alginate microcapsules produced using external or internal gelation. J. Microencapsul. 18:433–441 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. Z. Ma, T. M. Lim, and L.-Y. Lim. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int. J. Pharm. 293:271–280 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Y. Pan, Y. J. Li, H. Y. Zhao, J. M. Zheng, H. Xu, G. Wei, J. S. Hao, and F. D. Cui. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm. 249:139–147 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. M. Morishita, I. Morishita, K. Takayama, Y. Machida, and T. Nagai. Site-dependent effect of aprotinin, sodium caprate, Na2EDTA and sodium glycocholate on intestinal absorption of insulin. Biol. Pharm. Bull. 16:68–72 (1993).

    PubMed  CAS  Google Scholar 

  36. N. Gallo-Payet and J. S. Hugon. Insulin receptors in isolated adult mouse intestinal cells: studies in vivo and in organ culture. Endocrinology 114:1885–1892 (1984).

    Article  PubMed  CAS  Google Scholar 

  37. A. M. Lowman, M. Morishita, M. Kajita, T. Nagai, and N. A. Peppas. Oral delivery of insulin using pH-responsive complexation gels. J. Pharm. Sci. 88:933–937 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. Y. H. Lin, F. L. Mi, C. T. Chen, W. C. Chang, S. F. Peng, H. F. Liang, and H. W. Sung. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8:146–152 (2007).

    Article  PubMed  CAS  Google Scholar 

  39. Z. Ahmad, R. Pandey, S. Sharma, and G. K. Khuller. Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int. J. Antimicrob. Agents 27:409–416 (2006).

    Article  PubMed  CAS  Google Scholar 

  40. F. Cui, K. Shi, L. Zhang, A. Tao, and Y. Kawashima. Biodegradable nanoparticles loaded with insulin–phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. J. Control. Release 114:242–250 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. J. Kreuter. Colloidal drug delivery systems, M. Dekker, New York, (1994).

    Google Scholar 

  42. P. Couvreur, C. Dubernet, and F. Puisieux. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur. J. Pharm. Biopharm. 41:2–13 (1995).

    CAS  Google Scholar 

  43. A. Amin, T. Shah, J. Patel, and A. Gajjar. Current status of non-invasive insulin delivery technologies. Drug Deliv. Technol. 7:48–55 (2007).

    CAS  Google Scholar 

  44. H. Chen and R. Langer. Oral particulate delivery: status and future trends. Adv. Drug Deliv. Rev. 34:339–350 (1998).

    Article  PubMed  CAS  Google Scholar 

  45. A. Buda, C. Sands, and M. A. Jepson. Use of fluorescence imaging to investigate the structure and function of intestinal M cells. Adv. Drug Deliv. Rev. 57:123–134 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. C.-M. Lehr, J. A. Bouwstra, E. H. Schacht, and H. E. Junginger. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 78:43–48 (1992).

    Article  CAS  Google Scholar 

  47. K. A. Janes, P. Calvo, and M. J. Alonso. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 47:83–97 (2001).

    Article  PubMed  CAS  Google Scholar 

  48. L. Illum. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15:1326–1331 (1998).

    Article  PubMed  CAS  Google Scholar 

  49. M. George and T. E. Abraham. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—a review. J. Control. Release 114:1–14 (2006).

    Article  PubMed  CAS  Google Scholar 

  50. M. Thanou, J. C. Verhoef, and H. E. Junginger. Chitosan and its derivatives as intestinal absorption enhancers. Adv. Drug Deliv. Rev. 50:91–101 (2001).

    Article  Google Scholar 

  51. N. Salamat-Miller and T. P. Johnston. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int. J. Pharm. 294:201–216 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. S. Mao, O. Germershaus, D. Fischer, T. Linn, R. Schnepf, and T. Kissel. Uptake and transport of PEG-graft-trimethyl-chitosan copolymers as insulin nanocomplexes by epithelial cells. Pharm. Res. 22:2058–2068 (2005).

    Article  PubMed  CAS  Google Scholar 

  53. Z. Ma and L.-Y. Lim. Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm. Res. 20:1812–1819 (2003).

    Article  PubMed  CAS  Google Scholar 

  54. C. Prego, D. Torres, and M. J. Alonso. The potential of chitosan for the oral administration of peptides. Expert. Opin. Drug Deliv. 2:843–854 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia, Portugal and by the Natural Sciences and Engineering Research Council of Canada. The authors wish to thank Lilly Portugal for insulin supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sarmento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmento, B., Ribeiro, A., Veiga, F. et al. Alginate/Chitosan Nanoparticles are Effective for Oral Insulin Delivery. Pharm Res 24, 2198–2206 (2007). https://doi.org/10.1007/s11095-007-9367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9367-4

Key words

Navigation