Skip to main content
Log in

Structural Development of Self Nano Emulsifying Drug Delivery Systems (SNEDDS) During In Vitro Lipid Digestion Monitored by Small-angle X-ray Scattering

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the structural development of the colloid phases generated during lipolysis of a lipid-based formulation in an in vitro lipolysis model, which simulates digestion in the small intestine.

Materials and Methods

Small-Angle X-Ray scattering (SAXS) coupled with the in vitro lipolysis model which accurately reproduces the solubilizing environment in the gastrointestinal tract and simulates gastrointestinal lipid digestion through the use of bile and pancreatic extracts. The combined method was used to follow the intermediate digestion products of a self nano emulsified drug delivery system (SNEDDS) under fasted conditions. SNEDDS is developed to facilitate the uptake of poorly soluble drugs.

Results

The data revealed that a lamellar phase forms immediately after initiation of lipolysis, whereas a hexagonal phase is formed after 60 min. The change of the relative amounts of these phases clearly demonstrates that lipolysis is a dynamic process. The formation of these phases is driven by the lipase which continuously hydrolyzes triglycerides from the oil-cores of the nanoemulsion droplets into mono- and diglycerides and fatty acids. We propose that this change of the over-all composition of the intestinal fluid with increased fraction of hydrolyzed nanoemulsion induces a change in the composition and effective critical packing parameter of the amphiphilic molecules, which determines the phase behavior of the system. Control experiments (only the digestion medium) or the surfactant (Cremophor RH 40) revealed the formation of a lamellar phase demonstrating that the hexagonal phase is due to the hydrolysis of the SNEDDS formulation.

Conclusions

The current results demonstrate that SAXS measurements combined with the in vitro dynamic lipolysis model may be used to elucidate the processes encountered during the digestion of lipid-based formulations of poorly soluble drugs for oral drug delivery. Thus the combined methods may act as an efficient screening tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. W. Pouton. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 11:S93–S98 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. C. J. H. Porter, A. M. Kaukonen, A. Taillardat-Bertchinger, B. J. Boyd, J. M. O’Connor, G. A. Edwards, and W. N. Charman. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: studies with halofantrine. J. Pharm. Sci. 93:1110–1121 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. G. A. Kossena, W. N. Charman, B. J. Boyd, and C. J. H. Porter. Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug. J. Pharm. Sci. 94:481–492 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. D. Fatouros, and A. Müllertz. Using in vitro dynamic lipolysis modelling as a tool for exploring IVIVC relationships for oral lipid-based formulations. In D. Hauss (ed.), Lipid-based Formulations for Oral Drug Delivery, Taylor & Francis, New York (in press).

  5. N. H. Zangenberg, A. Müllertz, H. G. Kristensen, and L. Hovgaard. A dynamic in vitro lipolysis model. I. Controlling the rate of lipolysis by continuous addition of calcium. Eur. J. Pharm. Sci. 14:115–122 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. N. H. Zangenberg, A. Müllertz, H. G. Kristensen, and L. Hovgaard. A dynamic in vitro lipolysis model. II: Evaluation of the model. Eur. J. Pharm. Sci. 14:237–244 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. J. O. Christensen, K. Schultz, B. Mollgaard, H. G. Kristensen, and A. Müllertz. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur. J. Pharm. Sci. 23:287–296 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. A. F. Hofmann, and B. Borgstrom. Physico-chemical state of lipids in intestinal content during their digestion and absorption. Fed. Proc. 21:43–50 (1962).

    PubMed  CAS  Google Scholar 

  9. A. F. Hofmann, and B. Borgstrom. Intraluminal phase of fat digestion in man-lipid content of micellar + oil phases of intestinal content obtained during fat digestion + absorption. J. Clin. Invest. 43:247–257 (1964).

    PubMed  CAS  Google Scholar 

  10. J. S. Patton, and M. V. Carey. Watching fat digestion. Science 204:145–148 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. J. S. Patton, R. D. Vetter, M. Hamosh, B. Borgstrom, M. Lindstrom, and M. C. Carey. The light-microscopy of triglyceride digestion. Food Microstruc. 4:29–41 (1985).

    CAS  Google Scholar 

  12. M. W. Rigler, R. E. Honkanen, and J. S. Patton. Visualization by freeze fracture, in vitro and in vivo, of the products of fat digestion. J. Lipid Res. 8:836–857 (1986).

    Google Scholar 

  13. J. Borne, T. Nylander, and A. Khan. Effect of lipase on different lipid liquid crystalline phases formed by oleic acid based acylglycerols in aqueous systems. Langmuir 18:8972–8981 (2002).

    Article  CAS  Google Scholar 

  14. F. Caboi, J. Borne, T. Nylander, A. Khan, A. Svedsen, and S. Patkar. Lipase action on a monoolein/sodium oleate aqueous cubic liquid crystalline phase—a NMR and X-ray diffraction study. Colloids Surfac. B-Bionter. 26:159–171 (2002).

    Article  CAS  Google Scholar 

  15. F. S. Nielsen, E. Gibault, H. Ljusberg-Wahren, L. Arleth, J. S. Pedersen, and A. Müllertz. Characterization of prototype self-nano emulsifying formulations of lipophilic compounds. J. Pharm. Sci. 96:876–892 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. B. L. Pedersen, H. Brondsted, H. Lennernas, F. N. Christensen, A. Müllertz, H. G. Kristensen. Dissolution of hydrocortisone in human and simulated intestinal fluids. Pharm. Res. 2:183–189 (2000).

    Article  Google Scholar 

  17. B. Bergenstahl, and K. Fontell. Phase equilibria in the system soyabean lecithin water. Prog. Coll. Pol. Sci. 68:48–52 (1986).

    Google Scholar 

  18. J. P. Reymond, and H. Sucker. In vitro model for cyclosporine intestinal absorption in lipid vehicles. Pharm. Res. 5:673–676 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Gargouri, H. Moreau, and R. Verger. Gastric lipases: biochemical and physiological studies. Biochim. Biophys. Acta 1006:255–271 (1989).

    PubMed  CAS  Google Scholar 

  20. J. B. Dressman, R. R. Berardi, C. L. Dermentzoglou, T. L. Russell, S. P. Schmaltz, J. L. Barnett, and K. M. Jarvenpaa. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm. Res. 7:756–761 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. The United States Pharmacopoeia/The National Formulary, (USP 26/NF21). United States Pharmacopeia Convection, Inc., Rockville USP 26, 2003.

  22. K. J. MacGregor, J. K. Embleton, J. E. Lacy, A. E. Perry, L. J. Solomon, H. Seager, and C. W. Pouton. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv. Drug Deliv. Rev. 25:33–46 (1997).

    Article  CAS  Google Scholar 

  23. J. S. Pedersen. A flux- and background-optimized version of the NanoSTAR small-angle X-ray scattering camera for solution scattering. J. Appl. Crystall. 37:369–380 (2004).

    Article  CAS  Google Scholar 

  24. D. Wilcox, B. Dove, D. McDavid, and D. Greer. UTHSCSA Image Tool for Windows Vision 3. The University of Texas Health Science Center in San Antonio USA, 2002.

  25. J. S. Pedersen. Modelling of small-angle scattering data from colloids and polymer systems. In P. Lindner, and Th. Zemb (eds.), Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter, Elsevier, Dordrecht, 2002, pp. 73–102.

    Google Scholar 

  26. K. Fontel. Structure of lamellar liquid crystalline phase in aerosol-OT water system. J. Coll. Int. Sci. 44: 318–329 (1973).

    Article  Google Scholar 

  27. G. Pabst, M. Rappolt, H. Amenitsch, and P. Laggner. Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality X-ray data. Phys. Rev. E. 62:4000–4007 (2000).

    Article  CAS  Google Scholar 

  28. O. Hernell, J. E. Staggers, and M. C. Carey. Physicochemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase behavior and aggregation states of luminal lipids during duodenal fat digestion in health adult human beings. Biochemistry 29:2041–2056 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. M. W. Rigler, and J. S. Patton. The production of liquid crystalline product phase by pancreatic lipase in the absence of bile salts. Biochim. Biophys. Acta. 751:444–454 (1983).

    PubMed  CAS  Google Scholar 

  30. G. Cevc, and D. Marsh. In “Phospholipid bilayers, physical principles and models”, Wiley, New York, 1985, chapter 12.

  31. J. Israelachvili, D. J. Mitchell, and B. W. Ninham. Theory of self-assembly of hydrocarbon amphiphiles. J. Chem. Soc. Faraday II 72:1525–1568 (1976).

    Article  Google Scholar 

  32. J. Israelachvili. In “Intermolecular and Surface Forces”, 2nd Edition, Academic, New York, 1991

  33. E. S. Lutton. Phase behavior of aqueous systems of monoglycerides. J. Am. Oil Chem. Soc. 42:1068–1070 (1965).

    Article  PubMed  CAS  Google Scholar 

  34. N. Krog. Food emulsifiers and their chemical and physical properties. In S. Friberg, and K. Larsson (eds.) Food Emulsion, Marcel Dekker, New York, 1997, pp. 141–188.

    Google Scholar 

  35. J. S. Patton, and M. C. Carey. Inhibition of human pancreatic lipase-colipase activity by mixed bile salt-phospholipid micelles. Am. J. Physiol. 241:G328–G336 (1981).

    PubMed  CAS  Google Scholar 

  36. C. Tanford. Theory of micelle formation in aqueous-solutions. J. Phys. Chem. 78:2469–2479 (1974).

    Article  CAS  Google Scholar 

  37. P. W. Westerman. Physicochemical characterization of a model digestive mixture by 2H NMR. J. Lipid Res. 36:2478–2492 (1995).

    PubMed  CAS  Google Scholar 

  38. J. E. Staggers, O. Hernell, J. E. Staggers, M. C. Carey. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings. Biochemistry 29:2028–2040 (1990).

    Article  PubMed  CAS  Google Scholar 

  39. D. P. Cistola, D. Atkinson, J. A. Hamilton, and D. M. Small. Phase behavior and bilayer properties of fatty acids: hydrated 1:1 acid soaps. Biochemistry 25:2804–2812 (1986).

    Article  PubMed  CAS  Google Scholar 

  40. M. Lindstrom, H. Ljusberg-Wahren, K. Larsson, and B. Borgstrom. Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids 10:749–754 (1981).

    Article  Google Scholar 

  41. D. M. Small. A classification of biologic lipids based upon their interaction in aqueous systems. J. Am. Oil Chem. Soc. 45:108–119 (1968).

    Article  PubMed  CAS  Google Scholar 

  42. M. Svard, P. Schurtenberger, K. Fontell, B. Jonsson, and B. Lindman. Micelles, vesicles and liquid crystals in the monoolein-sodium taurocholeate-water system. Phase behavior, NMR, self-diffusion and quasi-elastic light scattering. J. Phys. Chem. 92:2261–2270 (1988).

    Article  Google Scholar 

Download references

Acknowledgement

The Cryo microscopy has been performed at the Biomicroscopy unit at the Centre of Chemistry and Chemical Engineering at Lund University, Sweden. The authors are grateful to Mrs Gunnel Karlsson for the skilful assistance with the Cryo-TEM instrument. This work is financially supported from Drug Research Academy (DRA), The Danish University of Pharmaceutical Sciences. Phosphatidylcholine EPIKURON 200 was kindly donated from Degussa, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios G. Fatouros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatouros, D.G., Deen, G.R., Arleth, L. et al. Structural Development of Self Nano Emulsifying Drug Delivery Systems (SNEDDS) During In Vitro Lipid Digestion Monitored by Small-angle X-ray Scattering. Pharm Res 24, 1844–1853 (2007). https://doi.org/10.1007/s11095-007-9304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9304-6

Key words

Navigation