Skip to main content
Log in

Focused-ion-beam Milling: A Novel Approach to Probing the Interior of Particles Used for Inhalation Aerosols

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The current study aimed to examine the pharmaceutical applications of the focused-ion-beam (FIB) in the inhalation aerosol field, particularly to particle porosity determination (i.e. percentage of particles having a porous interior).

Materials and Methods

The interior of various spray dried particles (bovine serum albumin (BSA) with different degrees of surface corrugation, mannitol, disodium cromoglycate and sodium chloride) was investigated via FIB milling at customized conditions, followed by viewing under a high resolution field-emission scanning electron microscope. Two sets of ten particles for each sample were examined.

Results

For the spray-dried BSA particles, a decrease in particle porosity (from 50 to 0%) was observed with increasing particle surface corrugation. Spray-dried mannitol, disodium cromoglycate and sodium chloride particles were determined to be 90–100%, 0–10% and 0% porous, respectively. The porosity in the BSA and mannitol particles thus should be considered for the aerodynamic behaviour of these particles.

Conclusions

The FIB technology represents a novel approach useful for probing the interior of particles linking to the aerosol properties of the powder. Suitable milling protocols have been developed which can be adapted to study other similar particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. D. J. Stokes, F. Morrissey, and B. H. Lich. A new approach to studying biological and soft materials using focused ion beam scanning electron microscopy (FIB SEM). J. Phys. 26:50–53 (2006).

    Google Scholar 

  2. P. R. Munroe and J. M. Cairney. The application of focused ion beam milling for electron microscope preparation. Proceedings of Materials 98: The Biennial Conference of the Institute of Materials Engineering, Australasia, 1998, pp. 457–462.

  3. T. Ishitani, H. Hirose, and H. Tsuboi. Focused-ion-beam digging of biological specimens. J. Electron Microsc. 44:110–114 (1995).

    CAS  Google Scholar 

  4. S. H. Moghadam, R. Dinarvand, and L. H. Cartilier. The focused ion beam technique: a useful tool for pharmaceutical characterization. Int. J. Pharm. 321:50–55 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. J. Melngailis. Critical review: Focused ion beam technology and applications. J. Vac. Sci. Technol., B 5:469–495 (1987).

    Article  CAS  Google Scholar 

  6. R. J. Young, T. Dingle, K. Robinson, and P. J. A. Pugh. An application of scanned focused ion beam milling to studies on the internal morphology of small arthropods. J. Microsc. 172:81–88 (1993).

    Google Scholar 

  7. L. Holzer, F. Indutnyi, P. H. Gasser, B. Munch, and M. Wegmann. Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J. Microsc. 216:84–95 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. P. R. Munroe, J. M. Cairney, and R. D. Smith. Application of the focused ion beam miller to the characterization of composite materials, Composites in the Transportation Industry ACUN-2, International Composites Conference, Sydney, Australia, 2000, pp. 486–494.

  9. J. M. Cairney, P. R. Munroe, and D. J. Sordelet. Microstructural analysis of a FeAl/quasicrystal-based composite prepared using a focused ion beam miller. J. Microsc. 201:201–211 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. J. M. Cairney and P. R. Munroe. Preparation of transmission electron microscope specimens from FeAl and WC powders using focused-ion beam milling. Mater. Charact. 45:1–8 (2001).

    Google Scholar 

  11. J. M. Cairney and P. R. Munroe. Redeposition effects in TEM sample preparation of FeAl-based metal matrix composites using the focused ion beam miller. Microsc. Microanal. 6:514–515 (2000).

    Google Scholar 

  12. A. Barna, B. Pecz, and M. Menyhard. TEM sample preparation by ion milling/amorphization. Micron 30:267–276 (1999).

    Article  Google Scholar 

  13. J. M. Cairney, R. D. Smith, and P. R. Munroe. Transmission electron microscope specimen preparation of metal matrix composites using the focused ion beam miller. Microsc. Microanal. 6:452–462 (2000).

    PubMed  Google Scholar 

  14. M. Dufek. The Quanta 200 3D user’s operation manual, 3rd edition, 2004, pp. 5–4, 5–42.

  15. D. Drobne, M. Milani, M. Ballerini, A. Zrimec, M. Berden Zrimec, F. Tatti, and K. Draslar. Focused ion beam for microscopy and in situ sample preparation: application on a crustacean digestive system. J. Biomed. Opt. 9:1238–1243 (2004).

    Article  PubMed  Google Scholar 

  16. D. Drobne, M. Milani, A. Zrimec, V. Leser, and M. Berden Zrimec. Electron and ion imaging of gland cells using the FIB/SEM system. J. Microsc. 219:29–35 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. M. Marko, C. Hsieh, W. Moberlychan, C. A. Mannella, and J. Frank. Focused ion beam milling of vitreous water: prospects for an alternative to cry-ultramicrotomy of frozen-hydrated biological samples. J. Microsc. 222:42–47 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. T. E. Tarara, J. G. Weers, and L. A. Dellamary. Engineered powders for inhalation. In R. N. Dalby, P. R. Byron, S. J. Farr, and J. Peart (eds.), Respiratory Drug Delivery VII, Vol. 2, Serentec, Raleigh, North Carolina, 2000, pp. 413–415.

    Google Scholar 

  19. R. Vanbever, J. D. Mintzes, J. Wang, J. Nice, D. Chen, R. Batycky, R. Langer, and D. A. Edwards. Formulation and physical characterisation of large porous particles for inhalation. Pharm. Res. 16:1735–1742 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. Y. F. Maa, P. A. Nguyen, T. Sweeney, S. J. Shire, and C. C. Hsu. Protein inhalation powders: spray drying vs spray freeze drying. Pharm. Res. 16:249–254 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. L. A. Dellamary, T. E. Tarara, D. J. Smith, C. H. Woelk, A. Adractas, M. L. Costello, H. Gill, and J. G. Weers. Hollow porous particles in metered dose inhalers. Pharm. Res. 17:168–174 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. N. Y. K. Chew, P. Tang, H. K. Chan, and J. A. Raper. How much particle surface corrugation is sufficient to improve aerosol performance of powders? Pharm. Res. 22:148–152 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. N. Y. K. Chew and H. K. Chan. Influence of particle size, airflow, and inhaler device on the dispersion of mannitol powders as aerosols. Pharm. Res. 16:1098–1103 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. N. Y. K. Chew and H. K. Chan. Use of solid corrugated particles to enhance powder aerosol performance. Pharm. Res. 18:1570–1577 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. B. I. Prenitzer, L. A. Giannuzzi, K. Newman, S. R. Brown, R. B. Irwin, T. L. Shofner, and F. A. Stevie. Transmission electron microscope specimen preparation of Zn powders using the focused ion beam lift-out technique. Metall. Mater. Trans., A 29A:2399–2406 (1998).

    Article  CAS  Google Scholar 

  26. J. K. Lomness, L. A. Giannuzzi, and M. D. Hampton. Site-specific transmission electron microscope characterization of micrometer-sized particles using the focused ion beam lift-out technique. Microsc. Microanal. 7:418–423 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. A. J. Smith, P. R. Munroe, T. Tran, and M. S. Wainwright. FIB preparation of a sensitive porous catalyst for TEM elemental mapping at high magnifications. J. Mater. Sci. 36:3519–3524 (2001).

    Article  CAS  Google Scholar 

  28. H. K. Chan and I. Gonda. Aerodynamic properties of elongated particles of cromoglycic acid. J. Aerosol Sci. 20:157–168 (1988).

    Article  Google Scholar 

  29. P. Tang, H. K. Chan, E. Tam, N. de Gruyter, and J. Chan. Preparation of NaCl powder suitable for inhalation. Ind. Eng. Chem. Res. 45:4188–4192 (2006).

    Article  CAS  Google Scholar 

  30. J. M. Cairney, P. R. Munroe, and J. H. Schneibel. Examination of fracture surfaces using focused ion beam milling. Scr. Mater. 42:473–478 (2000).

    Article  CAS  Google Scholar 

  31. D. J. Barber. Radiation damage in ion-milled specimens: characteristics, effects and methods of damage limitation. Ultramicroscopy 52:101–125 (1993).

    Article  CAS  Google Scholar 

  32. R. S. Nelson and D. J. Mazey. Surface damage and topography changes produced during sputtering. In R. Behrisch, W. Heiland, W. Poschenrieder, P. Staib, and H. Verbeek (eds.), Ion Surface Interaction, Sputtering and Related Phenomena, Gordon and Breach, UK, 1973, pp. 199–206.

    Google Scholar 

  33. L. Brown. Radiation damage in ion-milled specimens: characteristics, effects and methods of damage limitation. Radiat. Effects 98:101–125 (1986).

    Article  Google Scholar 

  34. A. Grenha, B. Seijo, and C. Remunan-Lopez. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur. J. Pharm. Sci. 25:427–437 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. J. Elversson and A. Millqvist-fureby. Particle size and density in spray drying—effects of carbohydrate properties. J. Pharm. Sci. 94:2049–2060 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Errin Johnson, Toshi Arakawa, Adam Sikorski, Ian Kaplin, Tony Romeo, Emine Korkmaz and Robert Mair of the Electron Microscope Unit (The University of Sydney) for their valuable advice and assistance in the area of microscopy. This work was supported by a grant from the Australian Research Council (ARC Linkage Project LP 0561675 with Nanomaterials Technology Pte. Ltd). DH was a recipient of the Australian Postgraduate Award (Industry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Kim Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heng, D., Tang, P., Cairney, J.M. et al. Focused-ion-beam Milling: A Novel Approach to Probing the Interior of Particles Used for Inhalation Aerosols. Pharm Res 24, 1608–1617 (2007). https://doi.org/10.1007/s11095-007-9276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9276-6

Key words

Navigation