Skip to main content
Log in

Role of a Novel Excipient Poly(Ethylene Glycol)-b-Poly(L-Histidine) in Retention of Physical Stability of Insulin in Aqueous Solutions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study is to investigate whether poly(ethylene glycol) (PEG)-b-poly(L-histidine) [PEG-polyHis] can reduce aggregation of insulin in aqueous solutions on agitation by forming ionic complexes.

Materials and Methods

Insulin aggregation on agitation was monitored spectrophotometrically and by fibrillation studies with a dye Thioflavin T. Pluronic F-127 as a control and PEG-polyHis as a novel multifunctional excipient were added to prevent destabilization of insulin. Conformation of insulin was evaluated in a circular dichroism (CD) study.

Results

Ionic interactions between insulin and PEG-polyHis were induced in the pH range: 5.5–6.5. pH 5.5 was selected for further evaluation based on particle size/zeta potential studies. Ionic complexation with PEG-polyHis is more effective at pH 5.5 in stabilizing insulin (75% of insulin retained versus 0% with no excipient) than Pluronic F-127 (42% retained). PEG-polyHis guards against insulin aggregation in non-complexing pH conditions (pH 7.4), 64% insulin retained versus 58% with F-127 and 0% with no excipient) pointing to the potential role played by PEG in modulation of insulin surface adsorption. Rate of fibrillation was higher for plain insulin compared with addition of PEG-polyHis and Pluronic F-127 at both pH.

Conclusions

Understanding and manipulation of such polyelectrolyte-protein complexation will likely play a role in protein stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. L. Selam. External and implantable insulin pumps: current place in the treatment of diabetes. Exp. Clin. Endocrinol. Diabetes 109(Supp2):S333–S340 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. H. M. Walter, R. Timmler, and H. Mehnert. Stabilized human insulin prevents catheter occlusion during continuous subcutaneous insulin infusion. Diabetes Res. 13(2):75–77 (1990).

    PubMed  CAS  Google Scholar 

  3. S. Sato, C. D. Ebert, and S. W. Kim. Prevention of insulin self-association and surface adsorption. J. Pharm. Sci. 72(3):228–232 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. A. K. Banga and R. Mitra. Minimization of shaking-induced formation of insoluble aggregates of insulin by cyclodextrins. J. Drug Target. 1(4):341–345 (1993).

    PubMed  CAS  Google Scholar 

  5. G. C. Visor, K. P. Tsa, J. Duffy, M. D. Miller, T. Calderwood, and V. M. Knepp. Quantitative evaluation of the stability and delivery of interleukin-1B by infusion. J. Parenter. Sci. Technol. 44:130–137 (1990).

    PubMed  CAS  Google Scholar 

  6. L. T. Vlasveld, J. H. Beijnen, J. J. Sein, E. M. Rankin, C. J. M. Melief, and A. Hekman. Reconstitution of recombinant interleukin-2 (rIL-2): a comparative study of various rIL-2 muteins. Eur. J. Cancer 29A:1979–1981 (1993).

    Google Scholar 

  7. S. T. Tzannis, W. J. M. Hrushesky, P. A. Wood, and T. M. Przybycien. Adsorption of a formulated protein on a drug delivery surface. J. Colloid Interface Sci. 189:216–228 (1997).

    Article  CAS  Google Scholar 

  8. Y. J. Wang and M. Hanson. Parenteral formulations of peptides and proteins: Stability and stabilizers. J. Parenter. Sci. Technol. 42:1–26 (1988).

    Google Scholar 

  9. W. Wang. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185:129–188 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. V. Sluzky, A. M. Klibanov, and R. Langer. Mechanism of insulin aggregation and stabilization in agitated aqueous solutions. Biotechnol. Bioeng. 40:895–903 (1992).

    Article  CAS  Google Scholar 

  11. W. D. Lougheed, A. M. Albisser, H. M. Martindale, J. C. Chow, and J. R. Clement. Physical stability of insulin formulations. Diabetes 32:424–432 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. A. S. Chawla, I. Hinberg, P. Blais, and D. Johnson. Aggregation of insulin, containing surfactants, in contact with different materials. Diabetes 34:420–424 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. H. Thurow and K. Geisen. Stabilization of dissolved proteins against denaturation at hydrophobic interfaces. Diabetologia 27:212–218 (1984).

    PubMed  CAS  Google Scholar 

  14. U. Grau. Chemical stability of insulin in a delivery system environment. Diabetologia 28:458–463 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. E. S. Lee, H. J. Shin, K. Na, and Y. H. Bae. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J. Control. Release 90(3):363–374 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. D. W. Pack, D. Putnam and R. Langer. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol. Bioeng. 67(2):217–223 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. J. H. Kim, A. Taluja, K. Knutson, and Y. H. Bae. Stability of Bovine Serum Albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres. J. Control. Release 109:86–100 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. P. L. Wang and T. P. Johnston. Enhanced stability of two model proteins in an agitated solution environment using poloxamer 407. J. Parenter. Sci. Technol. 47:183–189 (1993).

    PubMed  CAS  Google Scholar 

  19. M. Katakam and A. K. Banga. Use of poloxamer polymers to stabilize recombinant human growth hormone against various processing stresses. Pharm. Dev. Technol. 2(2):143–149 (1997).

    PubMed  CAS  Google Scholar 

  20. E. S. Lee, K. Na and Y. H. Bae. Polymeric micelles for tumor pH and folate-mediated targeting. J. Control. Release 91(1–2):103–113 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. A. Ahmad, I. S. Millett, S. Doniach, V. N. Uversky and A. L. Fink. Stimulation of Insulin fibrillation by urea-induced intermediates. J. Biol. Chem. 279(15):14999–15013 (2004).

    Article  Google Scholar 

  22. J. M. Davis, T. Arakawa, T. W. Strickland and D. A. Yphantis. Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells. Biochemistry 26(9):2633–2638 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. T. Toyoda, T. Itai, T. Arakawa, K. H. Aoki, and H. Yamaguchi. Stabilization of human recombinant erythropoietin through interactions with the highly branched N-glycans. J. Biochem. (Tokyo) 128(5):731–737 (2000).

    CAS  Google Scholar 

  24. J. L. England. Stabilization and release effects of Pluronic F127 in protein drug delivery. J. Undergrad. Sci. (Harvard University) 5(2):17–24 (2001).

    Google Scholar 

  25. A. Ahmad, I. S. Millett, S. Doniach, V. N. Uversky, and A. L. Fink. Partially folded intermediates in insulin fibrillation. Biochemistry 42:11404–11416 (2003).

    Article  Google Scholar 

  26. A. Ahmad, V. N. Uversky, D. Hong, and A. L. Fink. Early events in the fibrillation of monomeric insulin. J. Biol. Chem. 280(52):42669–42675 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. V. Sluzky, J. A. Tamada, A. M. Klibanov, and R. Langer. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc. Natl. Acad. Sci. U. S. A. 88:9371–9381 (1991).

    Article  Google Scholar 

  28. M. Katakam, L. N. Bell, and A. K. Banga. Effect of surfactants on physical stability of recombinant human growth hormone. J. Pharm. Sci. 84(6):713–716 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. O. L. Johnson, W. Jaworowicz, J. L. Cleland, L. Bailey, M. Charnis, E. Duenas, C. Wu, D. Shepard, S. Magil, T. Last, A. J. S. Jones, and S. D. Putney. The stabilization and encapsulation of human growth hormone into biodegradable microspheres. Pharm. Res. 14:730–735 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. R. C. Lee, L. P. River, F. S. Pan, and R. L. Wollmann. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc. Natl. Acad. Sci. U. S. A. 89:4524–4528 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. J. D. Marks, C. Y. Pan, T. Bushell, W. Cromie, and R. C. Lee. Amphiphilic tri-block provide potent membrane-targeted neuroprotection. FASEB J. 15:1107–1109 (2001).

    PubMed  CAS  Google Scholar 

  32. M. A. Andersson and R. Hatti-Kaul. Protein stabilizing effect of polyethyleneimine. J. Biotechnol. 72:21–31 (1999).

    Article  CAS  Google Scholar 

  33. A. S. Ganhorn, D. W. Green, A. D. Hershey, R. M. Gould, and B. V. Plapp. Kinetic characterization of yeast alcohol dehydrogenases. J. Biol. Chem. 262:3754–3761 (1987).

    Google Scholar 

  34. M. Teramoto, H. Nishibue, H. Ogawa, H. Kozono, K. Morita, and H. Matsuyama. Effect of addition of water-soluble cationic polymers on thermal stability and activity of glucose dehydrogenase. Colloids Surf., B Biointerfaces 7:165–171 (1996).

    Article  CAS  Google Scholar 

  35. M. Teramoto, H. Nishibue, H. Ogawa, H. Kozono, K. Morita, H. Matsuyama, and K. Kajiwara. Effect of addition of polyethyleneimine on thermal stability and activity of glucose dehydrogenase. Appl. Microbiol. Biotechnol. 38:203–208 (1992).

    Article  CAS  Google Scholar 

  36. K. Kaibara, T. Okazaki, H. B Bohidar, and P. L. Dubin. pH-induced coacervation in complexes of bovine serum albumin and cationic polyelectrolytes. Biomacromolecules 1(1):100–107 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. J. Xia, P. L. Dubin, E. Kokufuta, H. Havel, and B. B. Muhoberac. Light scattering, CD, and ligand binding studies of ferrihemoglobin-polyelectrolyte complexes. Biopolymers 50(2):153–161 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. J. M. Harris. Introduction to biotechnical and biomedical applications of poly(ethylene glycol). In J. M. Harris (ed.), Poly(ethylene glycol) Chemistry: Biochemical and Biomedical Applications, Vol. 1, Plenum Press, New York, 1992.

    Google Scholar 

  39. K. Hinds, J. J. Koh, L. Joss, F. Liu, M. Baudyš, and S. W. Kim. Synthesis and characterization of poly(ethylene glycol)-insulin conjugates. Bioconjug. Chem. 11:195–201 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. E. Ron, T. Turek, E. Mathiowitz, M. Chasin, M. Hageman, and R. Langer. Controlled release of polypeptides from polyanydrides. Proc. Natl. Acad. Sci. U. S. A. 90:4176–4180 (1993).

    Article  PubMed  CAS  Google Scholar 

  41. E. V. Kudryashova, T. M. Artemova, A. A. Vinogradov, A. K. Gladilin, V. V. Mozhaev, and A. V. Levashov. Stabilization and activation of alpha-chymotrypsin in water-organic solvent systems by complex formation with oligoamines. Protein Eng. 16(4):303–309 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. J. Gao and Y. P. L. Dubin. Binding of proteins to copolymers of varying hydrophobicity. Biopolymers 49(2):185–193 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. L. E. Bromberg. Interactions among proteins and hydrophobically modified polyelectrolytes. J. Pharm. Pharmacol. 53:541–547 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by an NIH grant GM72612. We thank Dr. Yu-Seok Youn for help in chromatographic procedures for insulin. Deepa Mishra, a fellow laboratory member helped in successful instruction of the RIA procedures and analyses and for valuable discussion and editing of the manuscript. Appreciation is also due to Dr. Michael Kay, Assistant Professor, Department of Biochemistry; University of Utah for his help in conducting and analyzing circular dichroism experiments. The authors would like to thank Dr. James N. Herron, Associate Professor, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah for his advice on fluorescence analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Han Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taluja, A., Bae, Y.H. Role of a Novel Excipient Poly(Ethylene Glycol)-b-Poly(L-Histidine) in Retention of Physical Stability of Insulin in Aqueous Solutions. Pharm Res 24, 1517–1526 (2007). https://doi.org/10.1007/s11095-007-9270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9270-z

Key words

Navigation