Skip to main content

Advertisement

Log in

Effect of Solid Lipid Nanoparticles Formulation Compositions on Their Size, Zeta Potential and Potential for In Vitro pHIS-HIV-Hugag Transfection

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This work was conducted to determine model equations describing the effect of solid lipid nanoparticles (SLN) formulation compositions on their size and zeta potential using the face-centered central composite design and to determine the effect of SLN formulation compositions on the potential for in vitro pHIS-HIV-hugag transfection.

Materials and Methods

SLN were prepared by the hot high pressure homogenization technique using cetylpalmitate as lipid matrix at varying concentrations of Tween 80 and Span 85 mixture, dimethyldioctadecyl ammonium bromide (DDAB) and cholesterol. Size and zeta potential used as responses of the design were measured at pH 7.0. The model equations were accepted as statistical significance at p value of less than 0.05. Ability of SLN to form complex with pHIS-HIV-hugag was evaluated by electrophoretic mobility shift assay. In vitro cytotoxicity of SLN was studied in HeLa cells using alamar blue bioassay. The potential of SLN for in vitro pHIS-HIV-hugag transfection was also determined in HeLa cells by western blot technique.

Results

SLN possessed diameter in a range of 136–191 nm and zeta potential 11–61 mV depending on the concentrations of surfactant mixture, DDAB and cholesterol. The regression analysis showed that the model equations of responses fitted well with quadratic equations. The ability of SLN to form complex with pHIS-HIV-hugag was also affected by formulation compositions. In vitro cytotoxicity results demonstrated that HeLa cells were not well tolerant of high concentrations of SLN but still survived in a range of 100–200 μg/ml of SLN in culture medium. The results of transfection study showed ability of SLN to use as a vector for in vitro pHIS-HIV-hugag transfection. However, their potential for in vitro transfection was lower than the established transfection reagent.

Conclusions

Size and zeta potential of SLN could be predicted from their quadratic model equations achieved by combination of three variables surfactant, DDAB and cholesterol concentrations. In addition, these variables also affected the potential of SLN as a vector for in vitro pHIS-HIV-hugag transfection. The results here provide the framework for further study involving the SLN formulation design for DNA delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Adj. R2 :

adjusted coefficient of determination

cm:

centimeter

CO2 :

carbon dioxide

CPC:

cetylpyridinium chloride

CTAB:

cetyltrimethylammonium bromide

°C:

degree Celsius

DDAB:

dimethyl dioctadecyl ammonium bromide

DMEM:

Dulbecco’s modified eagle’s medium

DOTAP:

N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride

EDTA:

ethylenediaminetetraacetic acid

EQ1:

esterquat 1 (N,N-di-(B-stearoylethyl)-N,N-dimethyl-ammonium chloride

FBS:

fetal bovine serum

g:

gram

HAART:

highly active antiretroviral therapy

HIV:

human immunodeficiency virus

ml:

milliliter

mV:

millivolt

nm:

nanometer

PBS:

phosphate buffer saline

PCS:

photon correlation spectroscopy

pDNA:

plasmid deoxy ribonucleic acid

PI:

polydispersity index

psi:

pound per square inch

rpm:

round per minute

SD:

standard deviation

SLN:

solid lipid nanoparticles

TAE:

tris-acetate EDTA

TEM:

transmission electron microscopy

UV:

ultraviolet

v/v:

volume by volume

w/v:

weight by volume

w/w:

weight by weight

μg:

microgram

μl:

microliter

%:

percent

References

  1. M. J. Alonso. Nanomedicines for overcoming biological barriers. Biomed. Pharmacother. 58:168–172 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. C. Olbrich, U. Bakowsky, C. Lehr, R. H. Müller, and C. Kneuer. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J. Control Release 77:345–355 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. K. Tabatt, C. Kneuer, M. Sameti, C. Olbrich, R. H. Müller, C. Lehr, and U. Bakowsky. Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. J. Control Release 97:321–332 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. K. Tabatt, M. Sameti, C. Olbrich, R. H. Müller, and C. Lehr. Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticles-mediated gene transfer. Eur. J. Pharm. Biopharm. 57:155–162 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. P. Calvo, M. J. Alonso, J. L. Vila-Jato, and J. R. Robinson. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J. Pharm. Pharmacol. 48:1147–1152 (1996).

    PubMed  CAS  Google Scholar 

  6. J. Vandervoort and A. Ludwig. Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. Int. J. Pharm. 238:77–92 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. S. Sierra, B. Kupfer, and R. Kaiser. Basics of the virology of HIV-1 and its replication. J. Clin. Virol. 34:233–244 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. C. P. Locher, D. Putnam, R. Langer, S. A. Witt, B. B. Ashlock, and J. A. Levy. Enhancement of a human immunodeficiency virus env DNA vaccine using a novel polycationic nanoparticle formulation. Immunol. Lett. 90:67–70 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. W. Mehnert and K. Mäder. Solid lipid nanoparticles production, characterization and applications. Adv. Drug Deliv. Rev. 47:165–196 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. M. Chacón, L. Berges, J. Molpeceres, M. R. Aberturas, and M. Guzman. Optimized preparation of poly D,L (lactic-glycolic) microspheres and nanoparticles for oral administration. Int. J. Pharm. 141:81–91 (1996).

    Article  Google Scholar 

  11. M. Davoren, S. N. Shúilleabháin, M. G. J. Hartl, D. Sheehan, N. M. O’Brien, J. O’Halloran, F. N. A. M. V. Pelt, and C. Mothersill. Assessing the potential of fish cell lines as tools for the cytotoxicity testing of estuarine sediment aqueous elutriates. Toxicol. In Vitro 19:421–431 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. M. A. Schubert and C. C. Müller-Goymann. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur. J. Pharm. Biopharm. 61:77–86 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. T. P. Goloub and R. J. Pugh. The role of the surfactant head group in the emulsification process: binary (nonionic-ionic) surfactant mixtures. J. Colloid Interface Sci. 291:256–262 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. S. K. Jain, M. K. Chourasia, R. Masuriha, V. Soni, A. Jain, N. K. Jain, and Y. Gupta. Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery. Drug Deliv. 12:207–215 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. E. F. de Souza and O. Teschke. Liposome stability verification by atomic force microscopy. Rev. Adv. Mater. Sci. 5:34–40 (2003).

    Google Scholar 

  16. Y. Gu and D. Li. The ζ-potential of silicone oil droplets dispersed in aqueous solutions. J. Colloid Interface Sci. 206:346–349 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. P. Ahlin, J. Kristl, and J. Smid-Korbar. Optimization of procedure parameters and physical stability of solid lipid nanoparticles in dispersions. Acta Pharm. 48:259–267 (1998).

    CAS  Google Scholar 

  18. S. Pang, H. Park, Y. Jang, W. Kim, and J. Kim. Effects of charge density and particle size of poly(styrene/(dimethylamino)ethyl emthacrylate) nanoparticle for gene delivery in 293 cells. Colloids Surf., B Biointerfaces 26:213–222 (2002).

    Article  CAS  Google Scholar 

  19. A. Roland and S. M. Sullivan. Pharmaceutical Gene Delivery Systems, Marcel Dekker, USA, 2003.

    Google Scholar 

  20. M. A. Egan, S. Megati, V. Roopand, D. Garcia-Hand, A. Luckay, S. Chong, M. Rosati, S. Sackitey, D. B. Weiner, B. K. Felber, G. N. Pavlagis, Z. R. Israel, J. H. Eldridge, and M. K. Sidhu. Rational design of plasmid DNA vaccine capable of eliciting cell-mediated immune responses to multiple HIV antigen in mice. Vaccine 24:4510–4523 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Z. Cui and R. J. Mumper. Topical immunization using nanoengineered genetic vaccines. J. Control Release 81:173–184 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. C. M. Wiethoff, J. G. Smith, G. S. Koe, and C. R. Middaugh. The potential role of proteoglycans in cationic lipid-mediated gene delivery: studies of the interaction of cationic lipid-DNA complexes with model glycosaminoglycans. J. Biol. Chem. 276:32806–32813 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. C. Hung, T. Hwang, C. Chang, and J. Fang. Physicochemical characterization and gene transfection efficiency of lipid emulsions with various co-emulsifiers. Int. J. Pharm. 289:197–208 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support for this work by the Thailand Research Fund (TRF) under the Royal Golden Jubilee PhD program grant and the Rachadapisek Sompoch Fund, Graduate School, Chulalongkorn University for providing Chulalongkorn University 90th Anniversary grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garnpimol C. Ritthidej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asasutjarit, R., Lorenzen, SI., Sirivichayakul, S. et al. Effect of Solid Lipid Nanoparticles Formulation Compositions on Their Size, Zeta Potential and Potential for In Vitro pHIS-HIV-Hugag Transfection. Pharm Res 24, 1098–1107 (2007). https://doi.org/10.1007/s11095-007-9234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9234-3

Key words

Navigation