Skip to main content
Log in

In Vivo Performance of a Liposomal Vascular Contrast Agent for CT and MR-Based Image Guidance Applications

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated the in vivo performance of a liposome formulation that co-encapsulates iohexol and gadoteridol as a multimodal contrast agent for computed tomography (CT) and magnetic resonance (MR)-based image guidance applications.

Materials and Methods

The pharmacokinetics and biodistribution studies were conducted in Balb-C mice using high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectrometry (ICP-AES) to detect iohexol and gadoteridol concentrations. The imaging efficacy of this liposome system was assessed in New Zealand White rabbits using a clinical CT and a clinical 1.5 Tesla MR scanner.

Results

The vascular half-lives of the liposome encapsulated iohexol and gadoteridol in mice were found to be 18.4 ± 2.4 and 18.1 ± 5.1 h. When administered at the same dose the distribution (α phase) half-lives for the free contrast agents were 12.3 ± 0.5 min (iohexol) and 7.6 ± 0.9 min (gadoteridol); while, the elimination (β phase) half-lives were 3.0 ± 0.9 h for free iohexol and 3.0 ± 1.3 h for free gadoteridol. The CT and MR signal increases were measured and correlated with the concentrations of iohexol and gadoteridol detected in plasma samples.

Conclusion

The long in vivo circulation lifetime and simultaneous CT and MR signal enhancement provided by this liposome system make it a promising agent for image guidance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.A. Kalender. X-ray based imaging for computer-assisted surgery. Minim. Invasive Ther. Allied Technol. 12: 52–58 (2003).

    Article  PubMed  Google Scholar 

  2. R. B. Sequeiros, R. Ojala, J. Kariniemi, J. Perala, J. Niinimaki, H. Reinikainen, and O. Tervonen. MR-guided interventional procedures: a review. Acta Radiol. 46: 576–586 (2005).

    Article  PubMed  Google Scholar 

  3. T. M. Peters. Image-guidance for surgical procedures. Phys. Med. Biol. 51: R505–540 (2006).

    Article  Google Scholar 

  4. M. A. Rafferty, J. H. Siewerdsen, Y. Chan, M. J. Daly, D. J. Moseley, D. A. Jaffray, and J. C. Irish. Intraoperative cone-beam CT for guidance of temporal bone surgery. Otolaryngol. Head Neck Surg. 134: 801–808 (2006).

    Article  PubMed  Google Scholar 

  5. M. Uematsu, M. Sonderegger, A. Shioda, K. Tahara, T. Fukui, Y. Hama, T. Kojima, J. R. Wong, and S. Kusano. Daily positioning accuracy of frameless stereotactic radiation therapy with a fusion of computed tomography and linear accelerator (focal) unit: evaluation of z-axis with a z-marker. Radiother. Oncol. 50: 337–339 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 53: 1337–1349 (2002).

    Article  PubMed  Google Scholar 

  7. A. K. Exadaktylos, J. Duwe, F. Eckstein, C. Stoupis, H. Schoenfeld, H. Zimmermann, and T. P. Carrel. The role of contrast-enhanced spiral CT imaging versus chest X-rays in surgical therapeutic concepts and thoracic aortic injury: a 29-year Swiss retrospective analysis of aortic surgery. Cardiovasc. J. S. Afr. 16: 162–165 (2005).

    PubMed  Google Scholar 

  8. M. Saeed, D. Saloner, O. Weber, A. Martin, C. Henk, and C. Higgins. MRI in guiding and assessing intramyocardial therapy. Eur. Radiol. 15: 851–863 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. J. G. Rosenman, E. P. Miller, G. Tracton, and T. J. Cullip. Image registration: an essential part of radiation therapy treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 40: 197–205 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. P. Leander, P. Hoglund, A. Borseth, Y. Kloster, and A. Berg. A new liposomal liver-specific contrast agent for CT: first human phase-I clinical trial assessing efficacy and safety. Eur. Radiol. 11: 698–704 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. C. Y. Kao, E. A. Hoffman, K. C. Beck, R. V. Bellamkonda, and A. V. Annapragada. Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad. Radiol. 10: 475–483 (2003).

    Article  PubMed  Google Scholar 

  12. S. Erdogan, A. Roby, R. Sawant, J. Hurley, and V. P. Torchilin. Gadolinium-loaded polychelating polymer-containing cancer cell-specific immunoliposomes. J. Liposome Res. 16: 45–55 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. K. F. Pirollo, J. Dagata, P. Wang, M. Freedman, A. Vladar, S. Fricke, L. Ileva, Q. Zhou, and E. H. Chang. A tumor-targeted nanodelivery system to improve early MRI detection of cancer. Mol. Imaging 5: 41–52 (2006).

    PubMed  Google Scholar 

  14. W. J. Mulder, G. J. Strijkers, G. A. van Tilborg, A. W. Griffioen, and K. Nicolay. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 19: 142–164 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. S. Mukundan, Jr., K. B. Ghaghada, C. T. Badea, C. Y. Kao, L. W. Hedlund, J. M. Provenzale, G. A. Johnson, E. Chen, R. V. Bellamkonda, and A. Annapragada. A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am. J. Roentgenol. 186: 300–307 (2006).

    Article  PubMed  Google Scholar 

  16. M. S. Martina, J. P. Fortin, C. Menager, O. Clement, G. Barratt, C. Grabielle-Madelmont, F. Gazeau, V. Cabuil, and S. Lesieur. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J. Am. Chem. Soc. 127: 10676–10685 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. C. M. Moran, J. A. Ross, C. Cunningham, M. Butler, T. Anderson, D. Newby, K. A. Fox, and W. N. McDicken. Manufacture and acoustical characterisation of a high-frequency contrast agent for targeting applications. Ultrasound Med. Biol. 32: 421–428 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. J. Zheng, G. Perkins, A. Kirilova, C. Allen, and D. A. Jaffray. Multimodal contrast agent for combined computed tomography and magnetic resonance imaging applications. Invest. Radiol. 41: 339–348 (2006).

    Article  PubMed  Google Scholar 

  19. M. T. Krauze, J. Forsayeth, J. W. Park, and K. S. Bankiewicz. Real-time imaging and quantification of brain delivery of liposomes. Pharm. Res. (2006).

  20. M. Vaccaro, A. Accardo, D. Tesauro, G. Mangiapia, D. Lof, K. Schillen, O. Soderman, G. Morelli, and L. Paduano. Supramolecular aggregates of amphiphilic gadolinium complexes as blood pool MRI/MRA contrast agents: physicochemical characterization. Langmuir 22: 6635–6643 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. H. Y. Lee, H. W. Jee, S. M. Seo, B. K. Kwak, G. Khang, and S. H. Cho. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents. Bioconjug. Chem. 17: 700–706 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. A. Accardo, D. Tesauro, P. Roscigno, E. Gianolio, L. Paduano, G. D’Errico, C. Pedone, and G. Morelli. Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI. J. Am. Chem. Soc. 126: 3097–3107 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. V. P. Torchilin. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv. Drug Deliv. Rev. 54: 235–252 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. V. P. Torchilin, M. D. Frank-Kamenetsky, and G. L. Wolf. CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad. Radiol. 6: 61–65 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. D. Zhu, R. D. White, P. A. Hardy, N. Weerapreeyakul, K. Sutthanut, and M. Jay. Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent. J. Nanosci. Nanotechnol. 6: 996–1003 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. I. R. Corbin, H. Li, J. Chen, S. Lund-Katz, R. Zhou, J. D. Glickson, and G. Zheng. Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast agents. Neoplasia 8: 488–498 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. M. A. McDonald and K. L. Watkin. Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles. Acad. Radiol. 13: 421–427 (2006).

    Article  PubMed  Google Scholar 

  28. H. Lee, E. Lee, K. Kim do, N. K. Jang, Y. Y. Jeong, and S. Jon. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J. Am. Chem. Soc. 128: 7383–7389 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 79: 248–253 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. O. Rabin, J. Manuel Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5: 118–122 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. V. S. Talanov, C. A. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett. 6: 1459–1463 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. H. Kobayashi and M. W. Brechbiel. Nano-sized MRI contrast agents with dendrimer cores. Adv. Drug Deliv. Rev. 57: 2271–2286 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. S. Langereis, Q. G. de Lussanet, M. H. van Genderen, E. W. Meijer, R. G. Beets-Tan, A. W. Griffioen, J. M. van Engelshoven, and W. H. Backes. Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed. 19: 133–141 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. Y. Fu, D. E. Nitecki, D. Maltby, G. H. Simon, K. Berejnoi, H. J. Raatschen, B. M. Yeh, D. M. Shames, and R. C. Brasch. Dendritic iodinated contrast agents with PEG-cores for CT imaging: synthesis and preliminary characterization. Bioconjug. Chem. 17: 1043–1056 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. M. Port, C. Corot, X. Violas, P. Robert, I. Raynal, and G. Gagneur. How to compare the efficiency of albumin-bound and nonalbumin-bound contrast agents in vivo: the concept of dynamic relaxivity. Invest. Radiol. 40: 565–573 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. Y. Zhang, P. L. Choyke, H. Lu, H. Takahashi, R. B. Mannon, X. Zhang, H. Marcos, K. C. Li, and J. B. Kopp. Detection and localization of proteinuria by dynamic contrast-enhanced magnetic resonance imaging using MS325. J. Am. Soc. Nephrol. 16: 1752–1757 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. A. M. Morawski, G. A. Lanza, and S. A. Wickline. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr. Opin. Biotechnol. 16: 89–92 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. M. A. McDonald and K. L. Watkin. Small particulate gadolinium oxide and gadolinium oxide albumin microspheres as multimodal contrast and therapeutic agents. Invest. Radiol. 38: 305–310 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 63: 8122–8125 (2003).

    PubMed  CAS  Google Scholar 

  40. G. R. Norman and D. L. Streiner. Biostatistics: The Bare Essentials. B. C. Decker, Hamilton, Canada, 2000.

  41. W. Mutzel and U. Speck. Pharmacokinetics and biotransformation of iohexol in the rat and the dog. Acta Radiol. Suppl. 362: 87–92 (1980).

    PubMed  CAS  Google Scholar 

  42. M. F. Tweedle, X. Zhang, M. Fernandez, P. Wedeking, A. D. Nunn, and H. W. Strauss. A noninvasive method for monitoring renal status at bedside. Invest. Radiol. 32: 802–805 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. M. Heilmann, F. Kiessling, M. Enderlin, and L. R. Schad. Determination of pharmacokinetic parameters in DCE MRI: consequence of nonlinearity between contrast agent concentration and signal intensity. Invest. Radiol. 41: 536–543 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. S. J. McLachlan, S. Eaton, and D. N. De Simone. Pharmacokinetic behavior of gadoteridol injection. Invest. Radiol. 27(Suppl 1): S12–S15 (1992).

    PubMed  Google Scholar 

  45. A. Arvidsson and A. Hedman. Plasma and renal clearance of iohexol—a study on the reproducibility of a method for the glomerular filtration rate. Scand. J. Clin. Lab. Invest. 50: 757–761 (1990).

    PubMed  CAS  Google Scholar 

  46. M. F. Tweedle. The ProHance story: the making of a novel MRI contrast agent. Eur. Radiol. 7(Suppl 5): 225–230 (1997).

    Article  PubMed  Google Scholar 

  47. C. Rasch, I. Barillot, P. Remeijer, A. Touw, M. van Herk, and J. V. Lebesque. Definition of the prostate in CT and MRI: a multi-observer study. Int. J. Radiat. Oncol. Biol. Phys. 43: 57–66 (1999).

    PubMed  CAS  Google Scholar 

  48. H. U. Kauczor. Multimodal imaging and computer assisted diagnosis for functional tumour characterisation. Cancer Imaging 5: 46–50 (2005).

    PubMed  Google Scholar 

  49. P. L. Choyke. Contrast agents for imaging tumor angiogenesis: is bigger better? Radiology 235: 1–2 (2005).

    Article  PubMed  Google Scholar 

  50. M. R. Dreher, W. Liu, C. R. Michelich, M. W. Dewhirst, F. Yuan, and A. Chilkoti. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 98: 335–344 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. K. A. Miles. Functional computed tomography in oncology. Eur. J. Cancer 38: 2079–2084 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. H. E. Daldrup-Link, G. H. Simon, and R. C. Brasch. Imaging of tumor angiogenesis: current approaches and future prospects. Curr. Pharm. Des. 12: 2661–2672 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded in-part by a CIHR Operating Grant and a CIHR Proof of Principle Grant to D.A. Jaffray and C. Allen, the Premier’s Research Excellence Award, the Fidani Chair in Radiation Physics and the Grange Advanced Simulation Initiative. J. Zheng is grateful for the Excellence in Radiation Research for the 21st Century Training Fellowship and the Mitchell Scholarship. The authors would like to thank the UHN animal care staff for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Liu, J., Dunne, M. et al. In Vivo Performance of a Liposomal Vascular Contrast Agent for CT and MR-Based Image Guidance Applications. Pharm Res 24, 1193–1201 (2007). https://doi.org/10.1007/s11095-006-9220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9220-1

Key words

Navigation