Skip to main content

Advertisement

Log in

The Evolving Role of Drug Metabolism in Drug Discovery and Development

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Drug metabolism in pharmaceutical research has traditionally focused on the well-defined aspects of absorption, distribution, metabolism and excretion, commonly-referred to ADME properties of a compound, particularly in the areas of metabolite identification, identification of drug metabolizing enzymes (DMEs) and associated metabolic pathways, and reaction mechanisms. This traditional emphasis was in part due to the limited scope of understanding and the unavailability of in vitro and in vivo tools with which to evaluate more complex properties and processes. However, advances over the past decade in separate but related fields such as pharmacogenetics, pharmacogenomics and drug transporters, have dramatically shifted the drug metabolism paradigm. For example, knowledge of the genetics and genomics of DMEs allows us to better understand and predict enzyme regulation and its effects on exogenous (pharmacokinetics) and endogenous pathways as well as biochemical processes (pharmacology). Advances in the transporter area have provided unprecedented insights into the role of transporter proteins in absorption, distribution, metabolism and excretion of drugs and their consequences with respect to clinical drug–drug and drug–endogenous substance interactions, toxicity and interindividual variability in pharmacokinetics. It is therefore essential that individuals involved in modern pharmaceutical research embrace a fully integrated approach and understanding of drug metabolism as is currently practiced. The intent of this review is to reexamine drug metabolism with respect to the traditional as well as current practices, with particular emphasis on the critical aspects of integrating chemistry and biology in the interpretation and application of metabolism data in pharmaceutical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Axelrod. The enzymatic deamination of amphetamine (benzedrine) J. Biol. Chem. 214:753–763 (1955).

    PubMed  CAS  Google Scholar 

  2. R. I. Dorfman, J. W. Cook, and J. B. Hamilton. Conversion by the human of the testis hormone, testosterone, into the urinary androgen, androsterone J. Biol. Chem. 130:285–295 (1939).

    CAS  Google Scholar 

  3. E. C. Miller, J. A. Miller, R. R. Brown, and J. C. Macdonald. On the protective action of certain polycyclic aromatic hydrocarbons against carcinogenesis by aminoazo dyes and 2-acetylaminofluorene Cancer Res. 18:469–477 (1958).

    PubMed  CAS  Google Scholar 

  4. G. C. Mueller and J. A. Miller. The metabolism of 4-dimethylaminoazobenzene by rat liver homogenates J. Biol. Chem. 176:535–544 (1948).

    CAS  PubMed  Google Scholar 

  5. G. C. Mueller and J. A. Miller. The metabolism of methylated aminoazo dyes. II. Oxidative demethylation by rat liver homogenates J. Biol. Chem. 202:579–587 (1953).

    PubMed  CAS  Google Scholar 

  6. K. J. Ryan. Conversion of androstenedione to estrone by placental microsomes Biochim. Biophys. Acta 27:658–659 (1958).

    PubMed  CAS  Google Scholar 

  7. R. T. Williams Detoxication Mechanisms: The Metabolism of Drugs and Allied Organic Compounds, Chapman and Hall, London, 1949.

    Google Scholar 

  8. R. T. Williams Detoxication Mechanisms: The Metabolism and Detoxication of Drugs, Toxic Substances, and Other Organic Compounds, Chapman and Hall, London, 1959.

    Google Scholar 

  9. P. D. Josephy, F. P. Guengerich, and J. O. Miners. Phase I and II drug metabolism: terminology that we should phase out? Drug Metab. Rev. 37:575–580 (2005).

    CAS  Google Scholar 

  10. H. S. Mason. Mechanisms of oxygen metabolism Science 125:1185–1188 (1957).

    PubMed  CAS  Google Scholar 

  11. D. Y. Cooper, S. Levin, S. Narasimhulu, and O. Rosenthal. Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems Science 147:400–402 (1965).

    PubMed  CAS  Google Scholar 

  12. T. Omura and R. Sato. A new cytochrome in liver microsomes J. Biol. Chem. 237:1375–1376 (1962).

    PubMed  CAS  Google Scholar 

  13. R. W. Estabrook, D. Y. Cooper, and O. Rosenthal. The light reversible carbon monoxide inhibition of the steroid C21-hydroxylase system of the adrenal cortex Biochem. Z. 338:741–755 (1963).

    PubMed  CAS  Google Scholar 

  14. A. Y. Lu and M. J. Coon. Role of hemoprotein P-450 in fatty acid omega-hydroxylation in a soluble enzyme system from liver microsomes J. Biol. Chem. 243:1331–1332 (1968).

    PubMed  CAS  Google Scholar 

  15. R. W. Estabrook. A passion for P450s (rememberances of the early history of research on cytochrome P450) Drug Metab. Dispos. 31:1461–1473 (2003).

    PubMed  CAS  Google Scholar 

  16. F. P. Guengerich. Cytochrome P450: what have we learned and what are the future issues? Drug Metab. Rev. 36:159–197 (2004).

    PubMed  CAS  Google Scholar 

  17. D. A. Haugen, T. A. van der Hoeven, and M. J. Coon. Purified liver microsomal cytochrome P-450. Separation and characterization of multiple forms J. Biol. Chem. 250:3567–3570 (1975).

    PubMed  CAS  Google Scholar 

  18. A. Hildebrandt, H. Remmer, and R. W. Estabrook. Cytochrome P-450 of liver microsomes-one pigment or many Biochem. Biophys. Res. Commun. 30:607–612 (1968).

    PubMed  CAS  Google Scholar 

  19. D. W. Nebert. Multiple forms of inducible drug-metabolizing enzymes: a reasonable mechanism by which any organism can cope with adversity Mol. Cell. Biochem. 27:27–46 (1979).

    PubMed  CAS  Google Scholar 

  20. N. E. Sladek and G. J. Mannering. Induction of drug metabolism. II. Qualitative differences in the microsomal N-demethylating systems stimulated by polycyclic hydrocarbons and by phenobarbital Mol. Pharmacol. 5:186–199 (1969).

    PubMed  CAS  Google Scholar 

  21. P. B. Danielson. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans Curr. Drug Metab. 3:561–597 (2002).

    PubMed  CAS  Google Scholar 

  22. S. D. Aust, D. L. Roerig, and T. C. Pederson. Evidence for superoxide generation by NADPH-cytochrome c reductase of rat liver microsomes Biochem. Biophys. Res. Commun. 47:1133–1137 (1972).

    PubMed  CAS  Google Scholar 

  23. J. T. Groves and G. A. McClusky. Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate Biochem. Biophys. Res. Commun. 81:154–160 (1978).

    PubMed  CAS  Google Scholar 

  24. F. P. Guengerich. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity Chem. Res. Toxicol. 14:611–650 (2001).

    PubMed  CAS  Google Scholar 

  25. P. R. Ortiz de Montellano Oxygen Activation and Reactivity, Cytochrome P450: Structure, Mechanisms, and Biochemistry. Plenum, New York, 1995, pp. 243–303.

    Google Scholar 

  26. P. R. Ortiz de Montellano and J. J. De Voss. Substrate oxidation by cytochrome P450 enzymes. In P. R. O. d. Montellano (ed.), Cytochrome P450: Structure, Mechanisms, and Biochemistry, Plenum, New York, 2004, pp. 183–230.

    Google Scholar 

  27. R. A. Sheldon and J. K. Kochi Activation of Molecular Oxygen by Metal Complexes. Metal-catalyzed Oxidations of Organic Compounds. Academic, New York, 1981, pp. 108–112.

    Google Scholar 

  28. H. W. Strobel and M. J. Coon. Effect of superoxide generation and dismutation on hydroxylation reactions catalyzed by liver microsomal cytochrome P-450 J. Biol. Chem. 246:7826–7829 (1971).

    PubMed  CAS  Google Scholar 

  29. S. Chen, J. E. Shively, S. Nakajin, M. Shinoda, and P. F. Hall. Amino terminal sequence analysis of human placenta aromatase Biochem. Biophys. Res. Commun. 135:713–719 (1986).

    PubMed  CAS  Google Scholar 

  30. A. Mahgoub, J. R. Idle, L. G. Dring, R. Lancaster, and R. L. Smith. Polymorphic hydroxylation of Debrisoquine in man Lancet 2:584–586 (1977).

    PubMed  CAS  Google Scholar 

  31. W. L. Miller. Congenital adrenal hyperplasia N. Engl. J. Med. 314:1321–1322 (1986).

    PubMed  CAS  Google Scholar 

  32. D. W. Nebert and D. W. Russell. Clinical importance of the cytochromes P450 Lancet 360:1155–1162 (2002).

    PubMed  CAS  Google Scholar 

  33. E. C. Miller and J. A. Miller. Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules Cancer 47:2327–2345 (1981).

    PubMed  CAS  Google Scholar 

  34. U. Groth and H. G. Neumann. The relevance of chemico-biological interactions for the toxic and carcinogenic effects of aromatic amines. V. The pharmacokinetics of related aromatic amines in blood Chem. Biol. Interact. 4:409–419 (1972).

    PubMed  CAS  Google Scholar 

  35. D. J. Jollow, J. R. Mitchell, W. Z. Potter, D. C. Davis, J. R. Gillette, and B. B. Brodie. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo J. Pharmacol. Exp. Ther. 187:195–202 (1973).

    PubMed  CAS  Google Scholar 

  36. W. Z. Potter, D. C. Davis, J. R. Mitchell, D. J. Jollow, J. R. Gillette, and B. B. Brodie. Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro J. Pharmacol. Exp. Ther. 187:203–210 (1973).

    PubMed  CAS  Google Scholar 

  37. I. Gardner, M. Popovic, N. Zahid, and J. P. Uetrecht. A comparison of the covalent binding of clozapine, procainamide, and vesnarinone to human neutrophils in vitro and rat tissues in vitro and in vivo Chem. Res. Toxicol. 18:1384–1394 (2005).

    PubMed  CAS  Google Scholar 

  38. A. S. Kalgutkar, I. Gardner, R. S. Obach, C. L. Shaffer, E. Callegari, K. R. Henne, A. E. Mutlib, D. K. Dalvie, J. S. Lee, Y. Nakai, J. P. O’Donnell, J. Boer, and S. P. Harriman. A comprehensive listing of bioactivation pathways of organic functional groups Curr. Drug Metab. 6:161–225 (2005).

    PubMed  CAS  Google Scholar 

  39. N. R. Pumford and N. C. Halmes. Protein targets of xenobiotic reactive intermediates Annu. Rev. Pharmacol. Toxicol. 37:91–117 (1997).

    PubMed  CAS  Google Scholar 

  40. J. Uetrecht. Prediction of a new drug’s potential to cause idiosyncratic reactions Curr. Opin. Drug. Discov. Dev. 4:55–59 (2001).

    CAS  Google Scholar 

  41. S. Zhou, E. Chan, W. Duan, M. Huang, and Y. Z. Chen. Drug bioactivation, covalent binding to target proteins and toxicity relevance Drug Metab. Rev. 37:41–213 (2005).

    PubMed  CAS  Google Scholar 

  42. E. Fontana, P. M. Dansette, and S. M. Poli. Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity Curr. Drug Metab. 6:413–454 (2005).

    PubMed  CAS  Google Scholar 

  43. S. Zhou, E. Chan, L. Y. Lim, U. A. Boelsterli, S. C. Li, J. Wang, Q. Zhang, M. Huang, and A. Xu. Therapeutic drugs that behave as mechanism-based inhibitors of cytochrome P450 3A4 Curr. Drug Metab. 5:415–442 (2004).

    PubMed  CAS  Google Scholar 

  44. S. Zhou, S. Yung Chan, B. Cher Goh, E. Chan, W. Duan, M. Huang, and H. L. McLeod. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs Clin. Pharmacokinet. 44:279–304 (2005).

    PubMed  CAS  Google Scholar 

  45. M. Eichelbaum, M. Ingelman-Sundberg, and W. E. Evans. Pharmacogenomics and individualized drug therapy Annu. Rev. Med. 57:119–137 (2006).

    PubMed  CAS  Google Scholar 

  46. G. S. Ginsburg, R. P. Konstance, J. S. Allsbrook, and K. A. Schulman. Implications of pharmacogenomics for drug development and clinical practice Arch. Intern. Med. 165:2331–2336 (2005).

    PubMed  Google Scholar 

  47. D. B. Goldstein, S. K. Tate, and S. M. Sisodiya. Pharmacogenetics goes genomic Nat. Rev., Genet. 4:937–947 (2003).

    CAS  Google Scholar 

  48. D. W. Nebert. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin. Genet. 56:247–258 (1999).

    PubMed  CAS  Google Scholar 

  49. A. Hedgecoe, and P. Martin. The drugs don’t work: expectations and the shaping of pharmacogenetics Soc. Stud. Sci. 33:327–364 (2003).

    PubMed  Google Scholar 

  50. C. R. Wolf, G. Smith, and R. L. Smith. Science, medicine, and the future: Pharmacogenetics BMJ 320:987–990 (2000).

    PubMed  CAS  Google Scholar 

  51. K. A. Frazer, L. Elnitski, D. M. Church, I. Dubchak, and R. C. Hardison. Cross-species sequence comparisons: a review of methods and available resources Genome Res. 13:1–12 (2003).

    PubMed  CAS  Google Scholar 

  52. K. A. Frazer, J. B. Sheehan, R. P. Stokowski, X. Chen, R. Hosseini, J. F. Cheng, S. P. Fodor, D. R. Cox, and N. Patil. Evolutionarily conserved sequences on human chromosome 21 Genome Res. 11:1651–1659 (2001).

    PubMed  CAS  Google Scholar 

  53. M. A. Higgins, B. R. Berridge, B. J. Mills, A. E. Schultze, H. Gao, G. H. Searfoss, T. K. Baker, and T. P. Ryan. Gene expression analysis of the acute phase response using a canine microarray Toxicol. Sci. 74:470–484 (2003).

    PubMed  CAS  Google Scholar 

  54. N. Kato, M. Shibutani, H. Takagi, C. Uneyama, K. Y. Lee, S. Takigami, K. Mashima, and M. Hirose. Gene expression profile in the livers of rats orally administered ethinylestradiol for 28 days using a microarray technique Toxicology 200:179–192 (2004).

    PubMed  CAS  Google Scholar 

  55. G. H. Searfoss, W. H. Jordan, D. O. Calligaro, E. J. Galbreath, L. M. Schirtzinger, B. R. Berridge, H. Gao, M. A. Higgins, P. C. May, and T. P. Ryan. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma-secretase inhibitor J. Biol. Chem. 278:46107–46116 (2003).

    PubMed  CAS  Google Scholar 

  56. B. Alexanderson, D. A. Evans, and F. Sjoqvist. Steady-state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy Br. Med. J. 4:764–768 (1969).

    PubMed  CAS  Google Scholar 

  57. W. Hammer, and F. Sjoqvist. Plasma levels of monomethylated tricyclic antidepressants during treatment with imipramine-like compounds Life Sci. 6:1895–1903 (1967).

    PubMed  CAS  Google Scholar 

  58. M. Eichelbaum. Polymorphic oxidation of debrisoquine and sparteine Prog. Clin. Biol. Res. 214:157–167 (1986).

    PubMed  CAS  Google Scholar 

  59. R. L. Smith. The Paton Prize Award. The discovery of the debrisoquine hydroxylation polymorphism: scientific and clinical impact and consequences Toxicology 168:11–19 (2001).

    PubMed  CAS  Google Scholar 

  60. L. Bertilsson. Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19 Clin. Pharmacokinet. 29:192–209 (1995).

    Article  PubMed  CAS  Google Scholar 

  61. C. Bruhn, J. Brockmoller, I. Cascorbi, I. Roots, and H. H. Borchert. Correlation between genotype and phenotype of the human arylamine N-acetyltransferase type 1 (NAT1) Biochem. Pharmacol. 58:1759–1764 (1999).

    PubMed  CAS  Google Scholar 

  62. T. K. Chang, L. Yu, J. A. Goldstein, and D. J. Waxman. Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation Pharmacogenetics 7:211–221 (1997).

    PubMed  CAS  Google Scholar 

  63. A. K. Daly, S. Cholerton, W. Gregory, and J. R. Idle. Metabolic polymorphisms Pharmacol. Ther. 57:129–160 (1993).

    PubMed  CAS  Google Scholar 

  64. S. Garte, L. Gaspari, A. K. Alexandrie, C. Ambrosone, H. Autrup, J. L. Autrup, H. Baranova, L. Bathum, S. Benhamou, P. Boffetta, C. Bouchardy, K. Breskvar, J. Brockmoller, I. Cascorbi, M. L. Clapper, C. Coutelle, A. Daly, M. Dell’Omo, V. Dolzan, C. M. Dresler, A. Fryer, A. Haugen, D. W. Hein, A. Hildesheim, A. Hirvonen, L. L. Hsieh, M. Ingelman-Sundberg, I. Kalina, D. Kang, M. Kihara, C. Kiyohara, P. Kremers, P. Lazarus, L. Le Marchand, M. C. Lechner, E. M. van Lieshout, S. London, J. J. Manni, C. M. Maugard, S. Morita, V. Nazar-Stewart, K. Noda, Y. Oda, F. F. Parl, R. Pastorelli, I. Persson, W. H. Peters, A. Rannug, T. Rebbeck, A. Risch, L. Roelandt, M. Romkes, D. Ryberg, J. Salagovic, B. Schoket, J. Seidegard, P. G. Shields, E. Sim, D. Sinnet, R. C. Strange, I. Stucker, H. Sugimura, J. To-Figueras, P. Vineis, M. C. Yu, and E. Taioli. Metabolic gene polymorphism frequencies in control populations Cancer Epidemiol. Biomark. Prev. 10:1239–1248 (2001).

    CAS  Google Scholar 

  65. J. A. Goldsteinand and S. M. de Morais. Biochemistry and molecular biology of the human CYP2C subfamily Pharmacogenetics 4:285–299 (1994).

    Google Scholar 

  66. S. Hoffmeyer, O. Burk, O. von Richter, H. P. Arnold, J. Brockmoller, A. Johne, I. Cascorbi, T. Gerloff, I. Roots, M. Eichelbaum, and U. Brinkmann. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo Proc. Natl. Acad. Sci. USA 97:3473–3478 (2000).

    PubMed  CAS  Google Scholar 

  67. M. Iwasaki, Y. Yoshimura, S. Asahi, K. Saito, S. Sakai, S. Morita, O. Takenaka, T. Inoda, E. Kashiyama, A. Aoyama, T. Nakabayashi, S. Omori, T. Kuwabara, T. Izumi, K. Nakamura, K. Takanaka, Y. Nakayama, M. Takeuchi, H. Nakamura, S. Kametani, Y. Terauchi, T. Hashizume, S. Nagayama, T. Kume, M. Achira, H. Kawai, T. Kawashiro, A. Nakamura, Y. Nakai, A. Kagayama, T. Shiraga, T. Niwa, T. Yoshimura, J. Morita, F. Ohsawa, M. Tani, N. Osawa, K. Ida, and K. Noguchi. Functional characterization of single nucleotide polymorphisms with amino acid substitution in CYP1A2, CYP2A6, and CYP2B6 found in the Japanese population Drug Metab. Pharmacokinet. 19:444–152 (2004).

    PubMed  CAS  Google Scholar 

  68. I. Johansson, Q. Y. Yue, M. L. Dahl, M. Heim, J. Sawe, L. Bertilsson, U. A. Meyer, F. Sjoqvist, and M. Ingelman-Sundberg. Genetic analysis of the interethnic difference between Chinese and Caucasians in the polymorphic metabolism of debrisoquine and codeine Eur. J. Clin. Pharmacol. 40:553–556 (1991).

    PubMed  CAS  Google Scholar 

  69. U. A. Meyer and U. M. Zanger. Molecular mechanisms of genetic polymorphisms of drug metabolism Annu. Rev. Pharmacol. Toxicol. 37:269–296 (1997).

    PubMed  CAS  Google Scholar 

  70. S. Ohgiya, M. Komori, H. Ohi, K. Shiramatsu, N. Shinriki, and T. Kamataki. Six-base deletion occurring in messages of human cytochrome P-450 in the CYP2C subfamily results in reduction of tolbutamide hydroxylase activity Biochem. Int. 27:1073–1081 (1992).

    PubMed  CAS  Google Scholar 

  71. K. C. Ferdinand. Isosorbide dinitrate and hydralazine hydrochloride: a review of efficacy and safety Expert Rev. Cardiovasc. Ther. 3:993–1001 (2005).

    PubMed  CAS  Google Scholar 

  72. S. B. Hagaand and G. S. Ginsburg. Prescribing BiDil: is it black and white? J. Am. Coll. Cardiol. 48:12–14 (2006).

    Google Scholar 

  73. D. M. Maraganore, M. de Andrade, T. G. Lesnick, K. J. Strain, M. J. Farrer, W. A. Rocca, P. V. Pant, K. A. Frazer, D. R. Cox, and D. G. Ballinger. High-resolution whole-genome association study of Parkinson disease Am. J. Hum. Genet. 77:685–693 (2005).

    PubMed  CAS  Google Scholar 

  74. B. B. Brodie, J. Axelrod, J. R. Cooper, L. Gaudette, B. N. La Du, C. Mitoma, and S. Udenfriend. Detoxication of drugs and other foreign compounds by liver microsomes Science 121:603–604 (1955).

    PubMed  CAS  Google Scholar 

  75. D. Garfinkel. Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions Arch. Biochem. Biophys. 77:493–509 (1958).

    PubMed  CAS  Google Scholar 

  76. M. Klingenberg. Pigments of rat liver microsomes Arch. Biochem. Biophys. 75:376–386 (1958).

    PubMed  CAS  Google Scholar 

  77. A. Y. Lu, K. W. Junk, and M. J. Coon. Resolution of the cytochrome P-450-containing omega-hydroxylation system of liver microsomes into three components J. Biol. Chem. 244:3714–3721 (1969).

    PubMed  CAS  Google Scholar 

  78. D. W. Nebert and L. L. Bausserman. Genetic differences in the extent of aryl hydrocarbon hydroxylase induction in mouse fetal cell cultures J. Biol. Chem. 245:6373–6382 (1970).

    PubMed  CAS  Google Scholar 

  79. A. B. Okey, G. P. Bondy, M. E. Mason, D. W. Nebert, C. J. Forster-Gibson, J. Muncan, and M. J. Dufresne. Temperature-dependent cytosol-to-nucleus translocation of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in continuous cell culture lines J. Biol. Chem. 255:11415–11422 (1980).

    PubMed  CAS  Google Scholar 

  80. J. E. Gielen and D. W. Nebert. Aryl hydrocarbon hydroxylase induction in mammalian liver cell culture. I. Stimulation of enzyme activity in nonhepatic cells and in hepatic cells by phenobarbital, polycyclic hydrocarbons, and 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane J. Biol. Chem. 246:5189–5198 (1971).

    PubMed  CAS  Google Scholar 

  81. J. Gorski and F. Gannon. Current models of steroid hormone action: a critique Annu. Rev. Physiol. 38:425–450 (1976).

    PubMed  CAS  Google Scholar 

  82. T. M. Guenthner and D. W. Nebert. Cytosolic receptor for aryl hydrocarbon hydroxylase induction by polycyclic aromatic compounds. Evidence for structural and regulatory variants among established cell cultured lines J. Biol. Chem. 252:8981–8989 (1977).

    PubMed  CAS  Google Scholar 

  83. A. Poland, E. Glover, and A. S. Kende. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase J. Biol. Chem. 251:4936–4946 (1976).

    PubMed  CAS  Google Scholar 

  84. G. Bertilsson, J. Heidrich, K. Svensson, M. Asman, L. Jendeberg, M. Sydow-Backman, R. Ohlsson, H. Postlind, P. Blomquist, and A. Berkenstam. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction Proc. Natl. Acad. Sci. U. S. A. 95:12208–12213 (1998).

    PubMed  CAS  Google Scholar 

  85. B. Blumberg, W. Sabbagh, Jr., H. Juguilon, J. Bolado, Jr., C. M. van Meter, E. S. Ong, and R. M. Evans. SXR, a novel steroid and xenobiotic-sensing nuclear receptor Genes Dev. 12:3195–3205 (1998).

    PubMed  CAS  Google Scholar 

  86. S. A. Kliewer, J. T. Moore, L. Wade, J. L. Staudinger, M. A. Watson, S. A. Jones, D. D. McKee, B. B. Oliver, T. M. Willson, R. H. Zetterstrom, T. Perlmann, and J. M. Lehmann. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway Cell 92:73–82 (1998).

    PubMed  CAS  Google Scholar 

  87. S. A. Kliewer, J. M. Lehmann, and T. M. Willson. Orphan nuclear receptors: shifting endocrinology into reverse Science 284:757–760 (1999).

    PubMed  CAS  Google Scholar 

  88. J. J. Repa and D. J. Mangelsdorf. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis Annu. Rev. Cell Dev. Biol. 16:459–481 (2000).

    PubMed  CAS  Google Scholar 

  89. T. H. Rushmore and A. N. Kong. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes Curr. Drug Metab. 3:481–490 (2002).

    PubMed  CAS  Google Scholar 

  90. J. H. Lin. Tissue distribution and pharmacodynamics: a complicated relationship Curr. Drug Metab. 7:39–65 (2006).

    PubMed  CAS  Google Scholar 

  91. J. Brockmoller, J. Kirchheiner, C. Meisel, and I. Roots. Pharmacogenetic diagnostics of cytochrome P450 polymorphisms in clinical drug development and in drug treatment Pharmacogenomics 1:125–151 (2000).

    PubMed  CAS  Google Scholar 

  92. M. Eichelbaum. Pharmacokinetic drug interactions. J. Clin. Pharmacol. 26:469–473 (1986).

    PubMed  CAS  Google Scholar 

  93. M. T. Zuhlsdorf. Relevance of pheno- and genotyping in clinical drug development Int. J. Clin. Pharmacol. Ther. 36:607–612 (1998).

    PubMed  CAS  Google Scholar 

  94. R. Weinshilboum. Inheritance and drug response N. Engl. J. Med. 348:529–537 (2003).

    PubMed  Google Scholar 

  95. M. Ingelman-Sundberg. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms Naunyn Schmiedebergs Arch. Pharmacol. 369:89–104 (2004).

    PubMed  CAS  Google Scholar 

  96. W. E. Evans and M. V. Relling. Pharmacogenomics: translating functional genomics into rational therapeutics Science 286:487–491 (1999).

    PubMed  CAS  Google Scholar 

  97. M. M. Shi, M. R. Bleavins, and F. A. de la Iglesia. Pharmacogenetic application in drug development and clinical trials Drug Metab. Dispos. 29:591–595 (2001).

    PubMed  CAS  Google Scholar 

  98. M. W. Linder, R. A. Prough, and R. Valdes, Jr. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency Clin. Chem. 43:254–266 (1997).

    PubMed  CAS  Google Scholar 

  99. T. Friedberg, M. P. Pritchard, M. Bandera, S. P. Hanlon, D. Yao, L. A. McLaughlin, S. Ding, B. Burchell, and C. R. Wolf. Merits and limitations of recombinant models for the study of human P450-mediated drug metabolism and toxicity: an intralaboratory comparison Drug Metab. Rev. 31:523–544 (1999).

    PubMed  CAS  Google Scholar 

  100. C. J. Henderson and C. R. Wolf. Transgenic analysis of human drug-metabolizing enzymes: preclinical drug development and toxicology Mol. Interv. 3:331–343 (2003).

    PubMed  CAS  Google Scholar 

  101. I. S. Vizirianakis. Challenges in current drug delivery from the potential application of pharmacogenomics and personalized medicine in clinical practice Curr. Drug Deliv. 1:73–80 (2004).

    PubMed  CAS  Google Scholar 

  102. C. R. Wolf. The Gerhard Zbinden memorial lecture: application of biochemical and genetic approaches to understanding pathways of chemical toxicity Toxicol. Lett. 127:3–17 (2002).

    PubMed  CAS  Google Scholar 

  103. P. M. Holland, R. D. Abramson, R. Watson, and D. H. Gelfand. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase Proc. Natl. Acad. Sci. U. S. A. 88:7276–7280 (1991).

    PubMed  CAS  Google Scholar 

  104. P. W. Kleyn and E. S. Vesell. Genetic variation as a guide to drug development Science 281:1820–1821 (1998).

    PubMed  CAS  Google Scholar 

  105. G. Luo, M. Cunningham, S. Kim, T. Burn, J. Lin, M. Sinz, G. Hamilton, C. Rizzo, S. Jolley, D. Gilbert, A. Downey, D. Mudra, R. Graham, K. Carroll, J. Xie, A. Madan, A. Parkinson, D. Christ, B. Selling, E. LeCluyse, and L. S. Gan. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes Drug Metab. Dispos. 30:795–804 (2002).

    PubMed  CAS  Google Scholar 

  106. L. G. Yengi, Q. Xiang, J. Pan, J. Scatina, J. Kao, S. E. Ball, R. Fruncillo, G. Ferron, and C. Roland Wolf. Quantitation of cytochrome P450 mRNA levels in human skin Anal. Biochem. 316:103–110 (2003).

    PubMed  CAS  Google Scholar 

  107. FDA Guidance for Industry. Drug Interaction Studies—Study Design, Data Analysis, and Implications for Dosing and Labeling, 2006.

  108. L. G. Yengi. Systems biology in drug safety and metabolism: integration of microarray, real-time PCR and enzyme approaches Pharmacogenomics 6:185–192 (2005).

    PubMed  CAS  Google Scholar 

  109. C. Debouck and P. N. Goodfellow. DNA microarrays in drug discovery and development Nat. Genet. 21:48–50 (1999).

    PubMed  CAS  Google Scholar 

  110. C. A. Harrington, C. Rosenow, and J. Retief. Monitoring gene expression using DNA microarrays Curr. Opin. Microbiol. 3:285–291 (2000).

    PubMed  CAS  Google Scholar 

  111. R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. Lockhart. High density synthetic oligonucleotide arrays Nat. Genet. 21:20–24 (1999).

    PubMed  CAS  Google Scholar 

  112. C. J. Henderson, D. M. Otto, D. Carrie, M. A. Magnuson, A. W. McLaren, I. Rosewell, and C. R. Wolf. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase J. Biol. Chem. 278:13480–13486 (2003).

    PubMed  CAS  Google Scholar 

  113. E. LeCluyse, A. Madan, G. Hamilton, K. Carroll, R. DeHaan, and A. Parkinson. Expression and regulation of cytochrome P450 enzymes in primary cultures of human hepatocytes J. Biochem. Mol. Toxicol. 14:177–188 (2000).

    PubMed  CAS  Google Scholar 

  114. A. P. Li, S. M. Colburn, and D. J. Beck. A simplified method for the culturing of primary adult rat and human hepatocytes as multicellular spheroids In Vitro Cell Dev. Biol. 28A:673–677 (1992).

    PubMed  CAS  Google Scholar 

  115. R. E. Pearce, C. J. McIntyre, A. Madan, U. Sanzgiri, A. J. Draper, P. L. Bullock, D. C. Cook, L. A. Burton, J. Latham, C. Nevins, and A. Parkinson. Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity Arch. Biochem. Biophys. 331:145–169 (1996).

    PubMed  CAS  Google Scholar 

  116. A. P. Li, D. L. Kaminski, and A. Rasmussen. Substrates of human hepatic cytochrome P450 3A4 Toxicology 104:1–8 (1995).

    PubMed  CAS  Google Scholar 

  117. J. D. Cleary, L. A. Walker, and R. L. Hawke. Antimycotic drug discovery in the age of genomics Am. J. Pharmacogenomics 5:365–386 (2005).

    PubMed  CAS  Google Scholar 

  118. D. Gerhold, M. Lu, J. Xu, C. Austin, C. T. Caskey, and T. Rushmore. Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays Physiol. Genomics. 5:161–170 (2001).

    PubMed  CAS  Google Scholar 

  119. D. J. McConn and Z. Zhao. Integrating in vitro kinetic data from compounds exhibiting induction, reversible inhibition and mechanism-based inactivation: in vitro study design Curr. Drug Metab. 5:141–146 (2004).

    PubMed  CAS  Google Scholar 

  120. G. Luo, J. Lin, W. D. Fiske, R. Dai, T. J. Yang, S. Kim, M. Sinz, E. LeCluyse, E. Solon, J. M. Brennan, I. H. Benedek, S. Jolley, D. Gilbert, L. Wang, F. W. Lee, and L. S. Gan. Concurrent induction and mechanism-based inactivation of CYP3A4 by an l-valinamide derivative Drug Metab. Dispos. 31:1170–1175 (2003).

    PubMed  CAS  Google Scholar 

  121. Y. Konno, M. Sekimoto, K. Nemoto, and M. Degawa. Sex difference in induction of hepatic CYP2B and CYP3A subfamily enzymes by nicardipine and nifedipine in rats Toxicol. Appl. Pharmacol. 196:20–28 (2004).

    PubMed  CAS  Google Scholar 

  122. D. Projean, S. Dautrey, H. K. Vu, T. Groblewski, J. L. Brazier, and J. Ducharme. Selective downregulation of hepatic cytochrome P450 expression and activity in a rat model of inflammatory pain Pharm. Res. 22:62–70 (2005).

    PubMed  CAS  Google Scholar 

  123. M. P. Murphy. Current pharmacogenomic approaches to clinical drug development Pharmacogenomics 1:115–123 (2000).

    PubMed  CAS  Google Scholar 

  124. B. Goodwin, E. Hodgson, and C. Liddle. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module Mol. Pharmacol. 56:1329–1339 (1999).

    PubMed  CAS  Google Scholar 

  125. N. Mizuno, T. Niwa, Y. Yotsumoto, and Y. Sugiyama. Impact of drug transporter studies on drug discovery and development Pharmacol. Rev. 55:425–461 (2003).

    PubMed  CAS  Google Scholar 

  126. P. M. Beringer and R. L. Slaughter. Transporters and their impact on drug disposition Ann. Pharmacother. 39:1097–1108 (2005).

    PubMed  CAS  Google Scholar 

  127. K. Ito, H. Suzuki, T. Horie, and Y. Sugiyama. Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport Pharm. Res. 22:1559–1577 (2005).

    PubMed  CAS  Google Scholar 

  128. J. H. Lin. Species similarities and differences in pharmacokinetics Drug Metab. Dispos. 23:1008–1021 (1995).

    PubMed  CAS  Google Scholar 

  129. Y. Sai. Biochemical and molecular pharmacological aspects of transporters as determinants of drug disposition Drug Metab. Pharmacokinet. 20:91–99 (2005).

    PubMed  CAS  Google Scholar 

  130. J. E. van Montfoort, B. Hagenbuch, G. M. Groothuis, H. Koepsell, P. J. Meier, and D. K. Meijer. Drug uptake systems in liver and kidney Curr. Drug Metab. 4:185–211 (2003).

    PubMed  Google Scholar 

  131. A. Bodo, E. Bakos, F. Szeri, A. Varadi, and B. Sarkadi. The role of multidrug transporters in drug availability, metabolism and toxicity Toxicol. Lett. 140–141:133–143 (2003).

    PubMed  Google Scholar 

  132. K. M. Mahar Doan, J. E. Humphreys, L. O. Webster, S. A. Wring, L. J. Shampine, C. J. Serabjit-Singh, K. K. Adkison, and J. W. Polli. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs J. Pharmacol. Exp. Ther. 303:1029–1037 (2002).

    PubMed  Google Scholar 

  133. G. K. Dresser, D. G. Bailey, B. F. Leake, U. I. Schwarz, P. A. Dawson, D. J. Freeman, and R. B. Kim. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine Clin. Pharmacol. Ther. 71:11–20 (2002).

    PubMed  CAS  Google Scholar 

  134. M. Cvetkovic, B. Leake, M. F. Fromm, G. R. Wilkinson, and R. B. Kim. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine Drug Metab. Dispos. 27:866–871 (1999).

    PubMed  CAS  Google Scholar 

  135. M. Masuda, Y. I’Izuka, M. Yamazaki, R. Nishigaki, Y. Kato, K. Ni’inuma, H. Suzuki, and Y. Sugiyama. Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats Cancer Res. 57:3506–3510 (1997).

    PubMed  CAS  Google Scholar 

  136. S. Seitz and U. A. Boelsterli. Diclofenac acyl glucuronide, a major biliary metabolite, is directly involved in small intestinal injury in rats Gastroenterology 115:1476–1482 (1998).

    PubMed  CAS  Google Scholar 

  137. B. Stieger, K. Fattinger, J. Madon, G. A. Kullak-Ublick, and P. J. Meier. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver Gastroenterology 118:422–430 (2000).

    PubMed  CAS  Google Scholar 

  138. C. Funk, M. Pantze, L. Jehle, C. Ponelle, G. Scheuermann, M. Lazendic, and R. Gasser. Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate Toxicology 167:83–98 (2001).

    PubMed  CAS  Google Scholar 

  139. T. Korjamo, P. Honkakoski, M. R. Toppinen, S. Niva, M. Reinisalo, J. J. Palmgren, and J. Monkkonen. Absorption properties and P-glycoprotein activity of modified Caco-2 cell lines. Eur. J. Pharm. Sci. 26:266–279 (2005).

    PubMed  CAS  Google Scholar 

  140. J. W. Polli, S. A. Wring, J. E. Humphreys, L. Huang, J. B. Morgan, L. O. Webster, and C. S. Serabjit-Singh. Rational use of in vitro P-glycoprotein assays in drug discovery J. Pharmacol. Exp. Ther. 299:620–628 (2001).

    PubMed  CAS  Google Scholar 

  141. P. P. Annaert and K. L. Brouwer. Assessment of drug interactions in hepatobiliary transport using rhodamine 123 in sandwich-cultured rat hepatocytes Drug Metab. Dispos. 33:388–394 (2005).

    PubMed  CAS  Google Scholar 

  142. P. P. Annaert, R. Z. Turncliff, C. L. Booth, D. R. Thakker, and K. L. Brouwer. P-glycoprotein-mediated in vitro biliary excretion in sandwich-cultured rat hepatocytes Drug Metab. Dispos. 29:1277–1283 (2001).

    PubMed  CAS  Google Scholar 

  143. W. Lee, H. Glaeser, L. H. Smith, R. L. Roberts, G. W. Moeckel, G. Gervasini, B. F. Leake, and R. B. Kim. Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry J. Biol. Chem. 280:9610–9617 (2005).

    PubMed  CAS  Google Scholar 

  144. M. Sasaki, H. Suzuki, J. Aoki, K. Ito, P. J. Meier, and Y. Sugiyama. Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2 Mol. Pharmacol. 66:450–459 (2004).

    PubMed  CAS  Google Scholar 

  145. H. Ishizuka, K. Konno, T. Shiina, H. Naganuma, K. Nishimura, K. Ito, H. Suzuki, and Y. Sugiyama. Species differences in the transport activity for organic anions across the bile canalicular membrane J. Pharmacol. Exp. Ther. 290:1324–1330 (1999).

    PubMed  CAS  Google Scholar 

  146. A. D. Shilling, F. Azam, J. Kao, and L. Leung. Use of canalicular membrane vesicles (CMVs) from rats, dogs, monkeys and humans to assess drug transport across the canalicular membrane J. Pharmacol. Toxicol. Methods 53:186–197 (2006).

    PubMed  CAS  Google Scholar 

  147. J. A. Williams, R. Hyland, B. C. Jones, D. A. Smith, S. Hurst, T. C. Goosen, V. Peterkin, J. R. Koup, and S. E. Ball. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios Drug Metab. Dispos. 32:1201–1208 (2004).

    PubMed  CAS  Google Scholar 

  148. J. B. Houston and D. J. Carlile. Prediction of hepatic clearance from microsomes, hepatocytes, and liver slices Drug Metab. Rev. 29:891–922 (1997).

    PubMed  CAS  Google Scholar 

  149. H. M. Jones and J. B. Houston. Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations Drug Metab. Dispos. 32:973–982 (2004).

    PubMed  CAS  Google Scholar 

  150. R. S. Obach. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes Drug Metab. Dispos. 27:1350–1359 (1999).

    PubMed  CAS  Google Scholar 

  151. S. X. Zhao, D. Forman, N. Wallace, B. J. Smith, D. Meyer, D. Kazolias, F. Gao, J. Soglia, M. Cole, and D. Nettleton. Simple strategies for reducing sample loads in in vitro metabolic stability high-throughput screening experiments: a comparison between traditional, two-time-point and pooled sample analyses J. Pharm. Sci. 94:38–45 (2005).

    PubMed  CAS  Google Scholar 

  152. Y. Naritomi, S. Terashita, A. Kagayama, and Y. Sugiyama. Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro Drug Metab. Dispos. 31:580–588 (2003).

    PubMed  CAS  Google Scholar 

  153. R. J. Riley, D. F. McGinnity, and R. P. Austin. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes Drug Metab. Dispos. 33:1304–1311 (2005).

    PubMed  CAS  Google Scholar 

  154. Y. Shibata, H. Takahashi, M. Chiba, and Y. Ishii. Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application of serum incubation method Drug Metab. Dispos. 30:892–896 (2002).

    PubMed  CAS  Google Scholar 

  155. L. P. Delbressine, C. W. Funke, M. van Tilborg, and F. M. Kaspersen. On the formation of carbamate glucuronides Xenobiotica 20:133–134 (1990).

    Article  PubMed  CAS  Google Scholar 

  156. S. D. Hall, K. E. Thummel, P. B. Watkins, K. S. Lown, L. Z. Benet, M. F. Paine, R. R. Mayo, D. K. Turgeon, D. G. Bailey, R. J. Fontana, and S. A. Wrighton. Molecular and physical mechanisms of first-pass extraction Drug Metab. Dispos. 27:161–166 (1999).

    PubMed  CAS  Google Scholar 

  157. M. F. Paine, H. L. Hart, S. S. Ludington, R. L. Haining, A. E. Rettie, and D. C. Zeldin. The human intestinal cytochrome P450 “pie” Drug Metab. Dispos. 34:880–886 (2006).

    PubMed  CAS  Google Scholar 

  158. C. Y. Wu and L. Z. Benet. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system Pharm. Res. 22:11–23 (2005).

    PubMed  CAS  Google Scholar 

  159. C. L. Cummins, W. Jacobsen, U. Christians, and L. Z. Benet. CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam J. Pharmacol. Exp. Ther. 308:143–155 (2004).

    PubMed  CAS  Google Scholar 

  160. M. F. Paine, L. Y. Leung, H. K. Lim, K. Liao, A. Oganesian, M. Y. Zhang, K. E. Thummel, and P. B. Watkins. Identification of a novel route of extraction of sirolimus in human small intestine: roles of metabolism and secretion J. Pharmacol. Exp. Ther. 301:174–186 (2002).

    PubMed  CAS  Google Scholar 

  161. L. Y. Leung, H. K. Lim, M. W. Abell, and J. J. Zimmerman. Pharmacokinetics and metabolic disposition of sirolimus in healthy male volunteers after a single oral dose Ther. Drug Monit. 28:51–61 (2006).

    PubMed  CAS  Google Scholar 

  162. R. L. Woosley, Y. Chen, J. P. Freiman, and R. A. Gillis. Mechanism of the cardiotoxic actions of terfenadine JAMA 269:1532–1536 (1993).

    PubMed  CAS  Google Scholar 

  163. A. Markham and A. J. Wagstaff. Fexofenadine Drugs 55:269–274; (discussion 275–276) (1998).

    PubMed  CAS  Google Scholar 

  164. P. Lu, M. L. Schrag, D. E. Slaughter, C. E. Raab, M. Shou, and A. D. Rodrigues. Mechanism-based inhibition of human liver microsomal cytochrome P450 1A2 by zileuton, a 5-lipoxygenase inhibitor Drug Metab. Dispos. 31:1352–1360 (2003).

    PubMed  CAS  Google Scholar 

  165. T. M. Polasek, D. J. Elliot, B. C. Lewis, and J. O. Miners. Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro J. Pharmacol. Exp. Ther. 311:996–1007 (2004).

    PubMed  CAS  Google Scholar 

  166. Z. Y. Zhang and Y. N. Wong. Enzyme kinetics for clinically relevant CYP inhibition Curr. Drug Metab. 6:241–257 (2005).

    PubMed  CAS  Google Scholar 

  167. T. D. Bjornsson, J. T. Callaghan, H. J. Einolf, V. Fischer, L. Gan, S. Grimm, J. Kao, S. P. King, G. Miwa, L. Ni, G. Kumar, J. McLeod, R. S. Obach, S. Roberts, A. Roe, A. Shah, F. Snikeris, J. T. Sullivan, D. Tweedie, J. M. Vega, J. Walsh, and S. A. Wrighton. The conduct of in vitro and in vivo drug–drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective Drug Metab. Dispos. 31:815–832 (2003).

    PubMed  CAS  Google Scholar 

  168. W. Tang, R. W. Wang, and A. Y. Lu. Utility of recombinant cytochrome p450 enzymes: a drug metabolism perspective Curr. Drug Metab. 6:503–517 (2005).

    PubMed  CAS  Google Scholar 

  169. A. L. Blobaum. Mechanism-based inactivation and reversibility: is there a new trend in the inactivation of cytochrome p450 enzymes? Drug Metab. Dispos. 34:1–7 (2006).

    PubMed  CAS  Google Scholar 

  170. E. A. Dierks, K. R. Stams, H. K. Lim, G. Cornelius, H. Zhang, and S. E. Ball. A method for the simultaneous evaluation of the activities of seven major human drug-metabolizing cytochrome P450s using an in vitro cocktail of probe substrates and fast gradient liquid chromatography tandem mass spectrometry Drug Metab. Dispos. 29:23–29 (2001).

    PubMed  CAS  Google Scholar 

  171. K. Ito, D. Hallifax, R. S. Obach, and J. B. Houston. Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug–drug interactions: CYP2D6 paradigm Drug Metab. Dispos. 33:837–844 (2005).

    PubMed  CAS  Google Scholar 

  172. B. S. Mayhew, D. R. Jones, and S. D. Hall. An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation Drug Metab. Dispos. 28:1031–1037 (2000).

    PubMed  CAS  Google Scholar 

  173. J. P. O’Donnell, D. K. Dalvie, A. S. Kalgutkar, and R. S. Obach. Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen Drug Metab. Dispos. 31:1369–1377 (2003).

    PubMed  CAS  Google Scholar 

  174. Y. H. Wang, D. R. Jones, and S. D. Hall. Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites Drug Metab. Dispos. 32:259–266 (2004).

    PubMed  CAS  Google Scholar 

  175. J. Yang, M. Jamei, K. R. Yeo, G. T. Tucker, and A. Rostami-Hodjegan. Kinetic values for mechanism-based enzyme inhibition: assessing the bias introduced by the conventional experimental protocol Eur. J. Pharm. Sci. 26:334–340 (2005).

    PubMed  CAS  Google Scholar 

  176. N. Greene, P. N. Judson, J. J. Langowski, and C. A. Marchant. Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR SAR QSAR Environ. Res. 10:299–314 (1999).

    PubMed  CAS  Google Scholar 

  177. H. K. Lim, N. Duczak, Jr., L. Brougham, M. Elliot, K. Patel, and K. Chan. Automated screening with confirmation of mechanism-based inactivation of CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP1A2 in pooled human liver microsomes Drug Metab. Dispos. 33:1211–1219 (2005).

    PubMed  CAS  Google Scholar 

  178. K. M. Bertelsen, K. Venkatakrishnan, L. L. Von Moltke, R. S. Obach, and D. J. Greenblatt. Apparent mechanism-based inhibition of human CYP2D6 in vitro by paroxetine: comparison with fluoxetine and quinidine Drug Metab. Dispos. 31:289–293 (2003).

    PubMed  CAS  Google Scholar 

  179. A. Hemeryck and F. M. Belpaire. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug–drug interactions: an update Curr. Drug Metab. 3:13–37 (2002).

    PubMed  CAS  Google Scholar 

  180. K. Venkatakrishnan and R. S. Obach. In vitro–in vivo extrapolation of CYP2D6 inactivation by paroxetine: prediction of nonstationary pharmacokinetics and drug interaction magnitude Drug Metab. Dispos. 33:845–852 (2005).

    PubMed  CAS  Google Scholar 

  181. T. Prueksaritanont, B. Ma, C. Tang, Y. Meng, C. Assang, P. Lu, P. J. Reider, J. H. Lin, and T. A. Baillie. Metabolic interactions between mibefradil and HMG-CoA reductase inhibitors: an in vitro investigation with human liver preparations Br. J. Clin. Pharmacol. 47:291–298 (1999).

    PubMed  CAS  Google Scholar 

  182. C. Wandel, R. B. Kim, F. P. Guengerich, and A. J. Wood. Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab Dispos 28: 895–898 (2000).

    PubMed  CAS  Google Scholar 

  183. F. de Longueville, F. A. Atienzar, L. Marcq, S. Dufrane, S. Evrard, L. Wouters, F. Leroux, V. Bertholet, B. Gerin, R. Whomsley, T. Arnould, J. Remacle, and M. Canning. Use of a low-density microarray for studying gene expression patterns induced by hepatotoxicants on primary cultures of rat hepatocytes Toxicol. Sci. 75:378–392 (2003).

    PubMed  Google Scholar 

  184. M. R. Fielden and T. R. Zacharewski. Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology Toxicol. Sci. 60:6–10 (2001).

    PubMed  CAS  Google Scholar 

  185. T. Storck, M. C. von Brevern, C. K. Behrens, J. Scheel, and A. Bach. Transcriptomics in predictive toxicology Curr. Opin. Drug Discov. Dev. 5:90–97 (2002).

    CAS  Google Scholar 

  186. F. Boess, M. Kamber, S. Romer, R. Gasser, D. Muller, S. Albertini, and L. Suter. Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems Toxicol. Sci. 73:386–402 (2003).

    PubMed  CAS  Google Scholar 

  187. J. F. Waring, G. Cavet, R. A. Jolly, J. McDowell, H. Dai, R. Ciurlionis, C. Zhang, R. Stoughton, P. Lum, A. Ferguson, C. J. Roberts, and R. G. Ulrich. Development of a DNA microarray for toxicology based on hepatotoxin-regulated sequences EHP Toxicogenomics 111:53–60 (2003).

    PubMed  CAS  Google Scholar 

  188. R. A. Roth, J. P. Luyendyk, J. F. Maddox, and P. E. Ganey. Inflammation and drug idiosyncrasy-is there a connection? J. Pharmacol. Exp. Ther. 307:1–8 (2003).

    PubMed  CAS  Google Scholar 

  189. D. P. Williams, N. R. Kitteringham, D. J. Naisbitt, M. Pirmohamed, D. A. Smith, and B. K. Park. Are chemically reactive metabolites responsible for adverse reactions to drugs? Curr. Drug Metab. 3:351–366 (2002).

    PubMed  CAS  Google Scholar 

  190. D. C. Liebler and F. P. Guengerich. Elucidating mechanisms of drug-induced toxicity Nat. Rev. Drug Discov. 4:410–420 (2005).

    PubMed  CAS  Google Scholar 

  191. J. Uetrecht. Screening for the potential of a drug candidate to cause idiosyncratic drug reactions Drug Discov. Today 8:832–837 (2003).

    PubMed  CAS  Google Scholar 

  192. C. Chen, J. L. Staudinger, and C. D. Klaassen. Nuclear receptor, pregname X receptor, is required for induction of UDP-glucuronosyltranferases in mouse liver by pregnenolone-16 alpha-carbonitrile Drug Metab. Dispos. 31:908–915 (2003).

    PubMed  CAS  Google Scholar 

  193. J. P. Nagpal, K. L. Khanduja, R. R. Sharma, S. Majumdar, R. Singh, M. P. Gupta, and S. C. Dogra. The effect of medroxyprogesterone acetate on the hepatic drug-metabolizing enzymes in normal and protein-deficient female rats Biochem. Med. 34:11–16 (1985).

    PubMed  CAS  Google Scholar 

  194. H. U. Saarni. Time course of hepatic changes produced by medroxyprogesterone acetate in the rat Gen. Pharmacol. 17:25–29 (1986).

    PubMed  CAS  Google Scholar 

  195. L. G. Yengi, Q. Xiang, L. Shen, C. Appavu, J. Kao, and J. Scatina. Application of pharmacogenomics in drug discovery and development: correlations between transcriptional modulation and preclinical safety observation. Drug metab. Lett 1:(2007).

  196. I. Kola and J. Landis. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3:711–715 (2004).

    PubMed  CAS  Google Scholar 

  197. M. P. Murphy, M. Bickel, D. Birkett, B. Clement, R. W. Estabrook, J. Gorrod, J. Hinson, P. Kissinger, T. Kunze, P. Maurel, P. Van Bladeren, and C. R. Wolf. History of Xenobiotic Metabolism. http://www.issx.org.

Download references

Acknowledgments

The authors would like to thank Dr Julius Enoru-Eta and Dr Joann Scatina for their review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian G. Yengi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yengi, L.G., Leung, L. & Kao, J. The Evolving Role of Drug Metabolism in Drug Discovery and Development. Pharm Res 24, 842–858 (2007). https://doi.org/10.1007/s11095-006-9217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9217-9

Key words

Navigation