Skip to main content
Log in

Estimation of Intragastric Solubility of Drugs: In What Medium?

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To measure the solubility of four drugs in human gastric aspirates, canine gastric aspirates (CGF) and simulated gastric fluids in order to propose a medium for estimating intragastric drug solubility relevant to a bioavailability study in the fasted state.

Materials and Methods

Intragastric environment after administration of water to healthy fasted adults and to healthy fasted dogs (this study) was initially characterized. Solubilities were then measured with the shake-flask method in gastric fluid aspirated after the administration of water to healthy fasted adults and to healthy fasted dogs, in various simulated gastric fluids, i.e. SGFSLS, SGFTriton, FaSSGF, FaSSGFNaCl, and in various HCl solutions with pH values ranging from 1.2 to 2.9.

Results

In all cases, FaSSGF performed better than canine aspirates, SGFSLS, SGFTriton, or FaSSGFNaCl in predicting solubility in HGF. However, its superiority over HCl pH 1.6 was not clear. For ketoconazole, dipyridamole, miconazole, and felodipine deviations of solubility data in FaSSGF from solubility data in HGF were non-significant, 34, −39 and 252%, respectively, whereas the corresponding deviations of data in HCl pH 1.6 from data in HGF were non-significant, 24, 70, and 130%, respectively.

Conclusions

Combining data in FaSSGF and HCl pH 1.6 is comparatively the most efficient way to get an estimate of drug solubility in the fasting gastric contents during a bioavailability study. However, accurate estimation of intragastric solubility is limited by the changing environment during intragastric residence of solid particles and the degree of simulation of intragastric composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Kalantzi, K. Goumas, V. Kalioras, B. Abrahamsson, J. Dressman, and C. Reppas. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm. Res. 23:165–176 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. W. Weitschies, R. S. Wedemeyer, O. Kosch, K. Fach, S. Nagel, E. Soderlind, L. Trahms, B. Abrahamsson, and H. Monnikes. Impact of the intragastric location of extended release tablets on food interactions. J. Control. Release 108:375–385 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. E. Rinaki, A. Dokoumetzidis, and P. Macheras. The mean dissolution time depends on the dose/solubility ratio. Pharm. Res. 20:406–408 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. J. B. Dressman, G. L. Amidon, C. Reppas, and V. P. Shah. Dissolution testing as a prognostic tool for oral drug absorption: Immediate release dosage forms. Pharm. Res. 15:11–22 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. E. Galia, J. Horton, and J. B. Dressman. Albendazole generics – A comparative in vitro study. Pharm. Res. 16:1871–1875 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. USP, United States Pharmacopeial Convention, Inc. The United States Pharmacopeia (USP 24), Rockville MD, 2000.

  7. Guidance for Industry. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system, Food and Drug Administration, CDER, August 2000.

  8. P. Luner and D. VanDer Kamp. Wetting characteristics of media emulating gastric fluids. Int. J. Pharm. 212:81–91 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. M. Vertzoni, J. Dressman, J. Butler, J. Hempenstall, and C. Reppas. Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur. J. Pharm. Biopharm. 60:413–417 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. B. L. Pedersen, A. Müllertz, H. Brøndsted, and H. G. Kristensen. A comparison of the solubility of danazol in human and simulated gastrointestinal fluids. Pharm. Res. 17:891–894 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. J. B. Dressman. Comparison of canine and human gastrointestinal physiology. Pharm. Res. 3:123–131 (1986).

    Article  CAS  Google Scholar 

  12. L. Kalantzi, E. Persson, B. Polentarutti, B. Abrahamsson, K. Goumas, J. Dressman, and C. Reppas. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm. Res. 23:1373–1381 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Greek National Formulary, National Organization of Drugs (ed.), ISBN 960-86876-2-4, Holargos, Athens, Greece, 2003.

  14. http://www.ap-algorithms.com (accessed 1 July 2006).

  15. G. Piel, B. Envard, M. Fillet, G. Llabres, and L. Delattre. Development of a non- surfactant parenteral formulation of miconazole by the use of cyclodextrins. Int. J. Pharm. 169:15–22 (1998).

    Article  CAS  Google Scholar 

  16. A. Scholz, B. Abrahamsson, S. M. Diebold, E. Kostewicz, B. I. Polentarutti, A. L. Ungell, and J. B. Dressman. Influence of hydrodynamics and particle size on the absorption of felodipine in labradors. Pharm. Res. 19:42–46 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. L. L. De Zwart, C. J. M. Rompelberg, A. J. A. M. Sips, J. Welink, and J. G. M. Van Engelen (1999) Anatomical and physiological differences between various species used in studies on the pharmacokinetics and toxicology of xenobiotics. A review of literature, http://www.rivm.nl/bibliotheek/rapporten/623860010.html, RIVM report 623860010 National Institute of Public Health and the Environment. Accessed October 29, 2005.

  18. A. Lindahl, A.-L. Ungell, L. Knutson, and H. Lennernas. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm. Res. 14:497–502 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. C. H. Gu, D. Rao, R. B. Gandhi, J. Hilden, and K. Raghavan. Using a novel multicompartment dissolution system to predict the effect of gastric pH on the oral absorption of weak base with pure intrinxic solubility. J. Pharm. Sci. 94:199–208 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. M. Vertzoni, C. Reppas, and H. Archontaki. Optimization and validation of a high-performance liquid chromatographic method with UV detection for the determination of ketoconazole in canine plasma. J. Chromatogr. B 839:62–67 (2006).

    CAS  Google Scholar 

  21. M. Kobylinska, K. Kobylinska, and B. Sobik. High performance liquid chromatographic analysis for the determination of miconazole in human plasma using solid-phase extraction. J. Chromatogr. B 685:191–195 (1996).

    Article  CAS  Google Scholar 

  22. Food Chemical Codex, 3rd ed. National Academy Press, Washington, 1981.

  23. L. Chen, J. Wesley, S. Bhattachar, B. Ruiz, K. Banash, and S. Babu. Dissolution behavior of a poorly water soluble compound in the presence of Tween 80. Pharm. Res. 20:797–801 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. C. Reppas, J. H. Meyer, P. J. Sirois, and J. B. Dressman. Effect of hydroxypropylmethylcellulose on gastrointestinal transit and luminal viscosity in dogs. Gastroenterology 100:1217–1223 (1991).

    PubMed  CAS  Google Scholar 

  25. M. Pedersen, S. Pedersen, and A. Sorensen. Polymorphism of miconazole during preparation of solid systems of the drug and beta-cyclodextrins. Pharm. Acta Helv. 68:43–47 (1993).

    Article  CAS  Google Scholar 

  26. N. Nafee, F. Ismail, N. Boraie, and L. Mortada. Mucoadhesive buccal patches of miconazole: in vitro/in vivo performance and effect of ageing. Int. J. Pharm. 264:1–14 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. S. Luhtala. Effect of sodium lauryl sulphate and polysorbate 80 on crystal growth and aqueous solubility of carbamazepine. Acta Pharm. Nord. 4:85–90 (1992).

    CAS  Google Scholar 

  28. A. L. Thakkar and N. A. Hall. Micellar solubilization of testosterone III: Dissolution behavior of testosterone in aqueous solutions of selected surfactants. J. Pharm. Sci. 58:68–71 (1969).

    Article  PubMed  CAS  Google Scholar 

  29. E. Leontidis. Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Coll. Interface Sci. 7:81–91 (2002).

    Article  CAS  Google Scholar 

  30. M. Rao, M. Lin, C. K. Larive, and M. Z. Southard. A mechanistic study of griseofulvin dissolution into surfactant solutions under laminar flow conditions. J. Pharm. Sci. 86:1132–1137 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. B. W. Trotman and W. L. Stone. The apparent association constant of calcium and bilirubinate ions in Triton X-100 micelles. J. Assoc. Acad. Minor. Physicians 1:11–16 (1989).

    CAS  Google Scholar 

  32. W. H. Streng, S. K. His, P. E. Helms, and H. G. H. Tan. General treatment of pH-solubility profiles of weak acids and bases and the effects of different acids on the solubility of a weak base. J. Pharm. Sci. 73:1679–1684 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. W. F. Ganong. Review of Medical Physiology, A Lange medical book, 15th ed. ISBN 08385-8418-7, Norwalk, California, 1991.

  34. C. Mowat and K. E. McColl. Alterations in intragastric nitrite and vitamin C levels during acid inhibitory therapy. Best Pract. Res. Clin. Gastroenterol. 15:523–537 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. S. Guilmeau, M. Buyse, and A. Bado. Gastric leptin: A new manager of gastrointestinal function. Curr. Opin. Pharmacol. 4:561–566 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. P. Macheras and C. Reppas. Dissolution and in vitro penetration behaviours of dicoumarol, nitrofurantoin and sulfamethizole in the presence of protein. Int. J. Pharm. 37:103–112 (1987).

    Article  CAS  Google Scholar 

  37. E. M. Persson, A. S. Gustafsson, A. S. Carlsson, R. G. Nilsson, L. Knutson, P. Forsell, G. Hanisch, H. Lennernas, and B. Abrahamsson. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm. Res. 22:2141–2151 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Part of this work has been presented at the 2nd Conference on Optimising Drug Delivery and Formulation, EUFEPS, November 20–23, 2005, Palais des Congrès de Versailles, Versailles, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Reppas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vertzoni, M., Pastelli, E., Psachoulias, D. et al. Estimation of Intragastric Solubility of Drugs: In What Medium?. Pharm Res 24, 909–917 (2007). https://doi.org/10.1007/s11095-006-9209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9209-9

Key words

Navigation