Skip to main content
Log in

Spray-drying Nanocapsules in Presence of Colloidal Silica as Drying Auxiliary Agent: Formulation and Process Variables Optimization Using Experimental Designs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them.

Materials and Methods

Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered.

Results

Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions.

Conclusion

This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Couvreur, C. Dubernet, and F. Puisieux. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur. J. Pharm. Biopharm. 41:2–13 (1995).

    CAS  Google Scholar 

  2. M. D. Coffin and J. W. McGinity. Biodegradable pseudolatexes: the chemical stability of poly (D, L-Lactide) and poly(ɛ-caprolactone) nanoparticles in aqueous media. Pharm. Res. 9:200–205 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. B. Magenheim and S. Benita. Nanoparticle characterization: a comprehensive physicochemical approach. S.T.P. Pharm. Sci. 1:221–241 (1991).

    CAS  Google Scholar 

  4. E. Allémann, R. Gurny, and E. Doelker. Drug-loaded nanoparticles—preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm. 39:173–191 (1993).

    Google Scholar 

  5. W. Abdelwahed, G. Degobert, and H. Fessi. Freeze-drying of nanocapsules: impact of annealing on the drying process. Int. J. Pharm. 324:74–82 (2006).

    Google Scholar 

  6. W. Abdelwahed, G. Degobert, and H. Fessi. Investigation of nanocapsules stabilization by amorphous excipients during freeze drying and storage. Eur. J. Pharm. Biopharm. 63:87–94 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. W. Abdelwahed, G. Degobert, and H. Fessi. A pilot study of freeze drying of poly (epsilon-caprolactone) nanocapsules stabilized by poly (vinyl alcohol): formulation and process optimization. Int. J. Pharm. 309:178–188 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. C. R. Müller, V. L. Bassani, A. R. Pohlmann, C. B. Michalowski, P. R. Petrovick, and S. S. Guterres. Preparation and characterization of spray-dried nanocapsules. Drug Dev. Ind. Pharm. 26:343–347 (2000).

    Article  PubMed  Google Scholar 

  9. K. Master. Spray Drying Handbook. Longman Scientific and Technical, New York, 1991.

    Google Scholar 

  10. J. Broadhead, S. K. Edmond Rouan, and C. T. Rhodes. The spray drying of pharmaceuticals. Drug. Dev. Ind. Pharm. 18:1169–1206 (1992).

    CAS  Google Scholar 

  11. K. G. H. Desai and H. J. Park. Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. J. Microencap. 22:179–192 (2005).

    CAS  Google Scholar 

  12. V. R. Sinha, R. Anitha, S. Ghosh, A. Nanda, and R. Kumria. Complexation of celecoxib with beta-cyclodextrin: characterization of the interaction in solution and in solid state. J. Pharm. Sci. 94:676–687 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. B. Boh, E. Knez, and M. Staresinic. Microencapsulation of higher hydrocarbon phase change materials by in situ polymerization. J. Microencap. 22:715–735 (2005).

    Article  CAS  Google Scholar 

  14. D. E. Oakley. Produce uniform particles by spray drying. Chem. Eng. Prog. 93:48–54 (1997).

    CAS  Google Scholar 

  15. U. Conte, B. Conti, P. Giunchedi, and L. Maggi. Spray dried polylactide microsphere preparation: influence of the technological parameters. Drug Dev. Ind. Pharm. 20:253–258 (1994).

    Google Scholar 

  16. S. Wendel and M. Celik. An overview of spray-drying applications. Pharm. Technol. 10:124–156 (1997).

    Google Scholar 

  17. P. Tewa-Tagne, S. Briançon, and H. Fessi. Spray-dried microparticles containing polymeric nanocapsules: formulation aspects, liquid phase interactions and particle characteristics. Int. J. Pharm. 325:63–74 (2006).

    Google Scholar 

  18. H. Fessi, F. Puisieux, and J. P. Devissaguet. Procédé de préparation de systèmes colloïdaux dispersibles d’une substance sous forme de nanocapsules. Eur. Pat. 0274961 B1 (1992).

  19. G. E. P. Box, W. G. Hunter, J. S. Hunter, and W. G. Hunter. Statistics for Experimenters. Wiley, New York, 1978.

    Google Scholar 

  20. I. Montasser, S. Briançon, J. Lieto, and H. Fessi. Méthodes d’obtention et mécanismes de formation de nanoparticules polymériques. J. Pharm. Belg. 55:155–167 (2000).

    PubMed  CAS  Google Scholar 

  21. R. C. Rowe, P. J. Sheskey, and P. J. Weller. Handbook of Pharmaceutical Excipients, 4th ed. Pharmaceutical, London, 2003.

    Google Scholar 

  22. A. R. Pohlmann, V. Weiss, O. Mertins, N. Pesce da Silveira, and S. S. Guterres. Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. Eur. J. Pharm. Sci. 16:305–312 (2002).

    Article  Google Scholar 

  23. S. S. Guterres, C. R. Muller, C. B. Michalowski, A. R. Pohlmann, and T. Dalla Costa. Gastro-intestinal tolerance following oral administration of spray-dried diclofenac-loaded nanocapsules and nanospheres. S.T.P. Pharma. Sci. 11:229–233 (2001).

    CAS  Google Scholar 

  24. S. R. Raghavan and S. A. Khan. Shear-thickening response of fumed silica suspensions under steady and oscillatory shear. J. Coll. Int. Sci. 185:57–67 (1997).

    Article  CAS  Google Scholar 

  25. F. Yziquel, P. J. Carreau, and P. A. Tanguy. Non linear viscoelastic behavior of fumed silica suspension. Rheol. Acta 38:14–25 (1999).

    Article  CAS  Google Scholar 

  26. J. Forsman, J. P. Harrison and A. Rutenberg. Elasticity of a percolation system: silica smoke. Can. J. Phys. 65:767–771 (1987).

    CAS  Google Scholar 

  27. M. A. Goula and K. G. Adamopoulos. Spray-drying of tomato pulp in dehumidified air. I. The effect on product recovery. J. Food Eng. 66:25–34 (2005).

    Article  Google Scholar 

  28. F Pavanetto, I. Genta, P. Giunchedi, B. Conti, and U. Conte. Spray dried albumin microspheres for the intra-articular delivery of dexamethazone. J. Microencap 11:445–454 (1994).

    CAS  Google Scholar 

  29. P. Giunchedi, C. Juliano, E. Gavini, M. Cossu, and M. Sorrenti. Formulation and in vivo evaluation of chlorhexidine buccal tablets prepared using drug-loaded chitosan microspheres. Eur. J. Pharm. Biopharm. 53:233–239 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. A. Martinac, J. Filipovic -Grcic´, B. Perissutti, D. Voinovich, and Z. Pavelic. Spray-dried chitosan/ethylcellulose microspheres for nasal drug delivery: swelling study and evaluation of in vitro drug release properties. J. Microencap 22:549–561 (2005).

    Article  CAS  Google Scholar 

  31. K. B. Prinn, R. H. Costantino, and M. Tracy. Statistical modeling of protein spray drying at the lab scale. AAPS Pharm. Sci. Tech. 3:1–8 (2002).

    Google Scholar 

  32. A. Billon, B. Bataille, G. Cassanas, and M. Jacob. Development of spray-dried acetaminophen microparticles using experimental designs. Int. J. Pharm. 203:159–168 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. G. F. Palmieri, P. Wehrlé, and A. Stamm. Evaluation of spray-drying as a method to prepare microparticles for controlled drug release. Drug Dev. Ind. Pharm. 20:2859–2879 (1994).

    CAS  Google Scholar 

  34. K. Mosen, K. Backstrom, K. Thalberg, T. Schaefer, H. G. Kristensen, and A. Axelsoon. Particle formation and capture during spray drying of inhalable particles. Pharm. Dev. Tech. 9:409–417 (2004).

    Article  CAS  Google Scholar 

  35. S. Nath and G. R. Satpathy. A systematic approach for investigation of spray drying processes. Drying Tech. 16:1173–1193 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghania Degobert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewa-Tagne, P., Degobert, G., Briançon, S. et al. Spray-drying Nanocapsules in Presence of Colloidal Silica as Drying Auxiliary Agent: Formulation and Process Variables Optimization Using Experimental Designs. Pharm Res 24, 650–661 (2007). https://doi.org/10.1007/s11095-006-9182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9182-3

Key words

Navigation