Skip to main content

Advertisement

Log in

Particle Size Analysis in Pharmaceutics: Principles, Methods and Applications

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Abstract

Physicochemical and biopharmaceutical properties of drug substances and dosage forms can be highly affected by the particle size, a critical process parameter in pharmaceutical production. The fundamental issue with particle size analysis is the variety of equivalent particle diameters generated by different methods, which is largely ascribable to the particle shape and particle dispersion mechanism involved. Thus, to enable selection of the most appropriate or optimal sizing technique, cross-correlation between different techniques may be required. This review offers an in-depth discussion on particle size analysis pertaining to specific pharmaceutical applications and regulatory aspects, fundamental principles and terminology, instrumentation types, data presentation and interpretation, in-line and process analytical technology. For illustration purposes, special consideration is given to the analysis of aerosols using time-of-flight and cascade impactor measurements, which is supported by a computational analysis conducted for this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Clarke. Inspired by design: evaluating novel particle production techniques. Proceedings of the Conference on Respiratory Drug Delivery, Boca Raton, FL, X:287–295 (2006).

  2. D. J. Burgess, E. Duffy, F. Etzler, and A. J. Hickey. Particle size analysis: AAPS workshop report, cosponsored by the Food and Drug Administration and the United States Pharmacopoeia. AAPS J. 6:1–12 (2004).

    Article  Google Scholar 

  3. A. Beckman, D. Shan, A. Ali, W. Dai, S. Ward-Smith, and M. Goldenberg. Micrometer-scale particle sizing by laser diffraction: critical impact of the imaginary component of refractive index. Pharm. Res. 22:518–522 (2005).

    Article  Google Scholar 

  4. T. M. Crowder, J. A. Rosati, J. D. Schroeter, A. J. Hichey, and T. B. Martonen. Fundamental effects of particle morphology on lung delivery: predictions of Stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharm. Res. 19:239–245 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. R. J. Haskell. Characterization of submicron systems via optical methods. J. Pharm. Sci. 87:125–128 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. B. Y. Shekunov. Production of powders for respiratory drug delivery. In P. York, U. B. Kompella, and B. Y. Shekunov (eds.), Supercritical Fluid Technology for Drug Product Development. New York: Marcel Decker. Drugs Pharm. Sci. 138:247–282 (2004).

  7. B. Y. Shekunov, J. C. Feeley, A. H. L. Chow, H. H. Y. Tong, and P. York. Aerosolisation behaviour of micronised and supercritically-processed powders. J. Aerosol Sci. 34:553–568 (2003).

    Article  CAS  Google Scholar 

  8. D. L. French, D. A. Edwards, and R. W. Niven. The influence of formulation on emission, deaggregation and deposition of dry powders for inhalation. J Aerosol Sci. 27:769–783 (1996).

    Article  CAS  Google Scholar 

  9. W. I. Li, M. Perzl, J. Heyder, R. Langer, J. D. Brain, K. H. Englmeier, R. W. Niven, and D. A. Edwards. Aerodynamics and aerosol particle deaggregation phenomena in model oral–pharyngeal cavities. J Aerosol Sci. 27:1269–1286 (1996).

    Article  CAS  Google Scholar 

  10. C. Bosquillon, C. Lombry, V. Preat, and R. Vanbever. Comparison of particle sizing techniques in the case of inhalation dry powders. J. Pharm. Sci. 90:2032–2041 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. H. M. Courrier, N. Butz, and T. F. Vandamme. Pulmonary drug delivery systems: recent developments and prospects. Crit. Rev. Ther. Drug 19:425–498 (2002).

    Article  CAS  Google Scholar 

  12. Center for Drug Evaluation and Research (CDER). Guidance for industry: nasal spray and inhalation solution, suspension, and spray drug products—chemistry, manufacturing, and controls documentation. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Rockville, MD, 2002.

    Google Scholar 

  13. O. S. Usmani, M. F. Biddiscombe, and P. J. Barnes. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. Am. J. Respir. Crit. Care Med. 172: 1497–1504 (2005).

    Article  PubMed  Google Scholar 

  14. R. J. Marin. Therapeutic significance of distal airway inflammation in asthma. J. Allergy. Clin. Immunol. 109:S447–S460 (2002).

    Article  Google Scholar 

  15. D. A. Edwards, A. Ben-Jebria, and R. Langer. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Applied Physiol. 84:379–385 (1998).

    Article  Google Scholar 

  16. S. P. Duddu, S. A. Sisk, Y. H. Walter, T. E. Tarara, K. R. Trimble, A. R. Clark, M. A. Eldon, R. C. Elton, M. Pickford, P. H. Hirst, S. P. Newman, and J. G. Weers. Improved lung delivery from a passive dry powder inhaler using an engineered PulmoSphere® powder. Pharm. Res. 19:689–695 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. D. A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. B. Jebria, M. L. Eskew, J. Mintzes, D. Deaver, N. Lotan, and R. Langer. Large porous particles for pulmonary drug delivery. Science 276:1868–1871 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. K. Koushik, D. S. Dhanda, N. P. S. Cheruvu, and U. B. Kompella. Pulmonary delivery of deslorelin: large porous PLGA particles and HPβCD complexes. Pharm. Res. 21: 1119–1126 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. H. K. Chan and I. Gonda. Physicochemical characterization of a new respirable form of nedocromil. J. Pharm. Sci. 84:692–696 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. B. Shekunov. Nanoparticle technology for drug delivery—from nanoparticles to cutting-edge delivery strategies. Part I. Meeting reports. IDrugs 8:399–401 (2005).

    PubMed  Google Scholar 

  21. T. S. Weidmann, L. DeCastro, and R. Wood. Nebulization of nanocrystals: production of respirable solid-in-liquid-in-air colloidal dispersion. Pharm. Res. 14:112–116 (1997).

    Article  Google Scholar 

  22. W. G. Kreyling, M. Semmler-Behnke, and W. Moller. Ultrafine particles—lung interactions: does size matter. J. Aerosol Med. 19:74–83 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. P. Lucas, K. Anderson, and J. N. Staniforth. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers. Pharm. Res. 15:562–569 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. F. Podczeck. The influence of particle size distribution and surface roughness of carrier particles on the in vitro properties of dry powder inhalations. Aerosol Sci. Tech. 31:301–321 (1999).

    Article  CAS  Google Scholar 

  25. M. D. Louey and P. J. Stewart. Particle interactions involved in aerosol dispersion of ternary interactive mixtures. Pharm. Res. 19:1524–1531 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. S. P. Shah and A. Misra. Liposomal amikacin dry powder inhaler: effect of fines on in vitro. AAPS Pharm Sci Tech. 5:1–7 (2004).

    Article  Google Scholar 

  27. F. S. Bennett, P. A. Carter, G. Rowley, and Y. Dandiker. Modification of electrostatic charge on inhaled carrier lactose particles by addition of fine particles. Drug Dev. Ind. Pharm. 25(1):99–103 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. T. H. Ibrahim, T. R. Burk, F. M. Etzler, and R. D. Neuman. Direct adhesion measurements of pharmaceutical particles to gelatine capsule surfaces. J. Adhes. Sci. Technol. 14:1225–1242 (2000).

    Article  CAS  Google Scholar 

  29. N. Islam, P. Stewart, I. Larson, and P. Hartley. Effect of carrier size on the dispersion of salmeterol xinafoate from interactive mixtures. J. Pharm. Sci. 93:1030–1038 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. M. J. Clarke, M. J. Tobyn, and J. N. Staniforth. The formulation of powder inhalation systems containing a high mass of nedocromil sodium trihydrate. J. Pharm. Sci. 90: 213–223 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. P. Taylor. Nasal drug delivery. In M. E. Aulton (ed.), Pharmaceutics: The Science of Dosage Form Design, Churchill Livingstone, London, 2002, pp. 489–498.

    Google Scholar 

  32. V. M. Leitner, D. Guggi, A. H. Krauland, and A. Bernkop-Schnurch. Nasal delivery of human growth hormone: in vitro and in vivo evaluation of a thiomer/glutathione microparticulate delivery system. J. Control. Release 100:87–95 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. A. Vila, H. Gill, O. McCallion, and M. J. Alonso. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J. Control. Release 98:231–244 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. J. Varshosaz, H. Sadrai, and R. Alinagari. Nasal delivery of insulin using chitosan microspheres. J. Microencapsul. 21: 761–774 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. R. J. Garmise, K. Mar, T. M. Crowder, C. R. Hwang, M. Ferriter, J. Huang, J. A. Mikszta, V. J. Sullivan, and A. J. Hickey. Formulation of a dry powder influenza vaccine for nasal delivery. AAPS PharmSciTech. 7:E1–E7 (2006).

    Article  Google Scholar 

  36. V. Swaminathan and D. O. Kildsig. Polydisperse powder mixtures: effect of particle size and shape on mixture stability. Drug Dev. Ind. Pharm. 28:41–48 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. T. Shiraishi, A. Sano, S. Kondo, H. Yuasa, and Y. Kanaya. Studies on the granulation process of granules for tableting with a high speed mixer. II. Influence of particle size of active substance on granulation. Chem. Pharm. Bull. 43: 654–659 (1995).

    Article  CAS  Google Scholar 

  38. T. Yajima, S. Itai, H. Hayashi, K. Takayama, and T. Nagai. Optimization of size distribution of granules for tablet compression. Chem. Pharm. Bull. 44:1056–1060 (1996).

    Article  CAS  Google Scholar 

  39. T. Yao, M. Yamada, H. Yamahara, and M. Yoshida. Tableting of coated particles. II. Influence of particle size of pharmaceutical additives on protection of coating membrane from mechanical damage during compression process. Chem. Pharm. Bull. 46:826–830 (1998).

    Article  CAS  Google Scholar 

  40. C. Sun and D. J. W. Grant. Influence of crystal shape on the tableting performance of l-lysine monohydrochloride dihydrate. J. Pharm. Sci. 90:569–579 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. S. Simoes, A. Sousa, and M. Figueiredo. Dissolution rate studies of pharmaceutical multisized powders—a practical approach using the Coulter method. Int. J. Pharm. 127: 283–291 (1996).

    Article  CAS  Google Scholar 

  42. J. B. Bressman and C. Reppas. In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. 11 (Suppl. 2):S73–S80 (2000).

    Article  Google Scholar 

  43. S. Horkovics-Kovats. Characterization of an active pharmaceutical ingredient by its dissolution properties: amoxicillin trihydrate as a model drug. Chemotherapy 50:234–244 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. H. Hu, K. P. Johnston, and R. O. Williams III. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev. Ind. Pharm. 30:233–245 (2004).

    Article  PubMed  Google Scholar 

  45. J. Siepmann, H. Kranz, N. A. Peppas, and R. Bodmeier. Calculation of the required size and shape of hydroxypropyl methylcellulose matrices to achieve desired drug release profiles. Int. J. Pharm. 201:151–164 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. I. Caraballo, M. Millan, and A. M. Rabasco. Relationship between drug percolation threshold and particle size in matrix tablets. Pharm. Res. 13:387–390 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. M. J. Fernandez Hervas, M. T. Vela, I. Caraballo, and A. M. Rabasco. Effect of drug particle size on the release behaviour of NaCl-matrix systems. Eur. J. Pharm. Biopharm. 42:208–211 (1996).

    CAS  Google Scholar 

  48. A. Miranda, M. Millan, and I Caraballo. Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery. Int. J. Pharm. 311:75–81 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. C. V. Liew, L. W. Chan, A. L. Ching, and P. W. S. Heng. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int. J. Pharm. 309:25–37 (2006).

    Article  PubMed  CAS  Google Scholar 

  50. M. L. Gonzalez-Rodriguez, F. Maestrelli, P. Mura, and A. M. Rabasco. In vitro release of sodium diclofenac from a central core matrix tablet aimed for colonic drug delivery. Eur. J. Pharm. Sci. 20:125–131 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. F. Sadeghi, H. A. Garekani, and F. Goli. Tableting of Eudragit RS and propranolol hydrochloride solid dispersion: Effect of particle size, compaction force, and plasticizer addition on drug release. Drug Dev. Ind. Pharm. 30:759–766 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. B. E. Rabinow. Nanosuspensions in Drug Delivery. Nat. Rev. Drug Discov. 3:785–796 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. B. E. Rabinow. Pharmacokinetics of nanosuspensions. Presentation at Nanotechnology for Drug Delivery Conference, Philadelphia, PA (2005).

  54. S. Ding. Recent developments in ophthalmic drug delivery. PSTT 1:328–335 (1998).

    CAS  Google Scholar 

  55. A. C. Williams. Transdermal and Topical Drug Delivery. Pharmaceutical Press, London, 2003.

    Google Scholar 

  56. A. Rolland. Particulate carriers in dermal and transdermal drug delivery: myth or reality? In: A. Rolland (ed.), Pharmaceutical Particulate Cariiers—Therapeutic Applications, Marcel Dekker, New York, 1993, pp. 367–421.

    Google Scholar 

  57. R. Alvarez-Roman, A. Naik, Y. N. Kalia, R. H. Guy, and H. Fessi. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 99:53–62 (2004).

    Article  PubMed  CAS  Google Scholar 

  58. J. Shim, H. Seok Kang, W. S. Park, S. H. Han, J. Kim, and I. S. Chang. Transdermal delivery of minoxidil with block copolymer nanoparticles. J. Control. Release 97:477–484 (2004).

    PubMed  CAS  Google Scholar 

  59. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Nanomedicine: current status and future prospects. FASEB J. 19:311–330 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. S. S. Feng. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Exp. Rev. Med. Devices 1:115–125 (2004).

    Article  CAS  Google Scholar 

  61. D. E. Discher. Nanoparticles, cells, and the body: new lessons from self-assembling polymers. Presentation at Nanotechnology for Drug Delivery Conference, Philadelphia, PA, 2005.

  62. A. Nel, T. Xia, L. Madler, and N. Li. Toxic potential of materials at the nanolevel. Science 311:622–627 (2006).

    Article  PubMed  CAS  Google Scholar 

  63. T. Kaewamatawong, N. Kawamura, M. Okajima, M. Sawada, T. Morita, and A. Shimada. Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice. Toxicol. Pathol. 33:743–749 (2005).

    Article  PubMed  CAS  Google Scholar 

  64. G. Oberdorster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, H. Yang, and ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2:8 (2005).

    Article  PubMed  Google Scholar 

  65. Food and Drug Administration. Code of Federal Regulations 21, Pt. 1. U.S. Department of Health and Human Services, Food and Drug Administration, Rockville, MD, 1997.

    Google Scholar 

  66. M. Niemann, M. Fusser, and L. Scaffidi. A critical comparison: particle counting with light obscuration and automated Raman microscopy. Proceedings of the Conference on Respiratory Drug Delivery, Boca Raton, FL, X:529–532 (2006).

  67. Center for Drug Evaluation and Research (CDER). Guidance for industry: metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products, chemistry, manufacturing, and controls. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Rockville, MD, 1998.

    Google Scholar 

  68. Center for Drug Evaluation and Research (CDER). Guidance for industry: bioavailability and bioequivalence studies for nasal aerosols and nasal sprays for local action. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Rockville, MD,, 1999 and 2003.

    Google Scholar 

  69. Center for Drug Evaluation and Research (CDER), and Center for Biologics Evaluation and Research (CBER). Guidance for industry: M4: the CTD—quality questions and answers/location issues. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), Rockville, MD, 2004.

    Google Scholar 

  70. M. Trunk and C. Weiler. Estimation of the aerodynamic particle size stability of spray-dried powders by thermoanalytical investigations. Proceedings of the Conference on Respiratory Drug Delivery, Palm Desert, CA, IX:385–387 (2004).

  71. ITFG/IPAC Collaboration, CMC Specifications Technical Team, and Particle Size Distribution Working Group. Initial assessment of the ITFG/IPAC aerodynamic particle size distribution database by the CMC Specifications Technical Team of the ITFG/IPAC Collaboration. http://0-www.fda.gov.lilac.une.edu/ohrms/dockets/ac/00/techrepro/3609_rpt2.pdf. Cited 29 Aug 2000.

  72. Inhalation Technology Focus Group/International Pharmaceutical aerosol Consortium on Regulation and Science Tests and Methods Technical Team. Recommendations to the Food and Drug Administration: metered dose inhaler tests and methods in the chemistry, manufacturing, and controls. Draft guidances for metered dose inhalers and dry powder inhalers. Drug Inf. J. 36:549–556 (2002).

    Google Scholar 

  73. F. M. Etzler. Particle size analysis: a comparison of methods. Am. Pharm. Rev. 7:104–108 (2004).

    Google Scholar 

  74. B. H. Kaye, D. Alliet, L. Switzer, and C. Turbitt-Daoust. The effect of shape on intermethod correlation of techniques for characterizing the size distribution of powder. Part 1. Correlating the size distribution measured by sieving, image analysis and diffractometer methods. Part. Part. Syst. Charact. 14: 219–224 (1997).

    CAS  Google Scholar 

  75. B. H. Kaye, D. Alliet, L. Switzer, and C. Turbitt-Daoust. The effect of shape on intermethod correlation of techniques for characterizing the size distribution of powder. Part 2. Correlating the size distribution as measured by diffractometer methods, TSI-Amherst aerosol spectrometer and Coulter counter. Part. Part. Syst. Charact. 16:266–272 (1999).

    Article  Google Scholar 

  76. T. E. Corcoran, R. Hitron, W. Humphreys, and N. Chigier. Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry and time of flight techniques. J. Aerosol Sci. 31:35–50 (2000).

    Article  CAS  Google Scholar 

  77. H. G. Brittain, S. J. Bogdanovich, D. E. Bugay, J. DeVincentis, G. Lewen, and A. W. Newman. Physical characterization of pharmaceutical solids. Pharm. Res. 8:963–973 (1991).

    Article  PubMed  CAS  Google Scholar 

  78. J. P. Mitchell, M. W. Nagel, K. J. Wiersema, and C. C. Doyle. Aerodynamic particle size analysis of aerosols from pressurized metered-dose inhalers: comparison of Andersen 8-stage cascade impactor, next generation pharmaceutical impactor and model 3321 aerodynamic particle sizer aerosol spectrometer. AAPS Pharm Sci Tech. 4:1–9 (2003).

    Article  Google Scholar 

  79. M. L. Thatcher, B. A. S. Brown, B. J. Gabrio, and M. Johnson. A rapid protein particle size measurements method for metered dose inhaler development: novel use of the small scale powder disperser and aerodynamic particle sizer. Presented at Annual AAPS Meeting, Denver, CO, 21–25 October 2001.

  80. Y. S. Cheng, E. B. Barr, I. A. Marshall, and J. P. Mitchell. Calibration and performance of an API aerosizer. J. Aerosol Sci. 24:501–514 (1993).

    Article  CAS  Google Scholar 

  81. P. A. Baron. Calibration and use of the aerodynamic particle sizer (APS3300). Aerosol Sci. Tech. 5:55–67 (1986).

    Article  CAS  Google Scholar 

  82. T. Allen. Particle Size Measurement. Powder Sampling and Particle Size Measurement, vol. 15. Chapman & Hall, London, 1997.

    Google Scholar 

  83. R. Davies. In M. Grayson (ed.), Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. John Wiley, 1982, p. 528.

  84. G. Nichols, S. Byard, M. J. Bloxham, J. Botterill, N. J. Dawson, A. Dennis, V. Diart, N. C. North, and J. D. Sherwood. A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J. Pharm. Sci. 91:2103–2109 (2002).

    Article  PubMed  CAS  Google Scholar 

  85. B. Y. Shekunov, P. Chattopadhyay, J. Seitzinger, and R. Huff. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm. Res. 23: 196–204 (2006).

    Article  PubMed  CAS  Google Scholar 

  86. N. Y. K. Chew, B. Y. Shekunov, H. H. Y. Tong, A. H. L. Chow, C. Savage, J. Wu, and H. K. Chan. Effect of amino acids on the dispersion of disodium cromoglycate powders. J. Pharm. Sci. 94:2289–2301 (2005).

    Article  PubMed  CAS  Google Scholar 

  87. B. H. Kaye. Making and characterizing nanopowders. Proceedings of PBS, Chicago, 2001.

  88. D. J. Burgess, D. J. A. Crommelin, A. S. Hussain, and M.-L. Chen. Assuring quality and performance of sustained and controlled release parenterals: EUFEPS Workshop report. AAPS Pharm Sci. 6:1–12 (2004).

    Article  Google Scholar 

  89. J. C. Feeley, P York, B. S. Sumby, H. Dicks, and M. Hanna. In vitro assessment of salbutamol sulphate prepared by micronisation and a novel supercritical fluid technique. Drug Delivery to the Lungs IX:196–199, (1998).

    Google Scholar 

  90. B. Y. Shekunov, P. Chattopadhyay, D. Yim, D. Cippola, and B. Boyd. AERx aerosol properties of drug–lipid nanosuspensions produced using supercritical extraction of emulsion (SFEE). Proceedings of the Conference on Respiratory Drug Delivery, Boca Raton, FL, 10:609–612 (2006).

  91. N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, E. Astrakharchik-Farrimond, and B. Y. Shekunov. Amplitude and phase microscopy for sizing of spherical particles. Appl. Opt. 42:4488–4499 (2003).

    Article  PubMed  Google Scholar 

  92. W. Smith and S. Murdande. Nanosizing for improving the delivery of drugs with poor solubility (in press). Pharm. Res. (2006).

  93. O. Klueva, M. P. Nelson, P. J. Treado, and A. M. Waligorski. An ingredient-specific method for particle size characterization of corticosteroid nasal sprays. Proceedings of the Conference Particles 2006: medical/biochemical, diagnostic, pharmaceutical and drug delivery applications of particle technology. Orlando, FL, pp. 101–102 (2006).

  94. P. M. Young, D. Cocconi, P. Colombo, R Bettini, R. Price, D. F. Steele, and M. J. Tobyn. Characterization of a surface modified dry powder inhalation carrier prepared by “particle smoothing”. J. Pharm. Pharmacol. 54:1339–1344 (2002).

    Article  PubMed  CAS  Google Scholar 

  95. N. Gabas, N. Niquily, and C. Laguerie. Response of laser diffraction particle sizer to anisometric particle. Part. Part. Syst. Charact. 11:121–126 (1994).

    Article  Google Scholar 

  96. S. Röthele, H. Naumann, and M. Heuer. The application of Fraunhofer diffraction below 1 μm to particle size analysis from 0.1μm to 2000μm. Proceedings of the 7th European Symposium on Particle Characterisation, Nürnberg, Germany, 1998.

  97. P. G. Rogueda, V. Buckin, and E. Kudryashov. Size and concentration monitoring of HFA suspensions. Proceedings of the Conference on Respiratory Drug Delivery, Boca Raton, FL, X:453–456 (2006).

  98. P. G. Rogueda. Particle aggregation in aerosol clouds. Proceedings of the Conference on Respiratory Drug Delivery, Boca Raton, FL, X:449–452 (2006).

  99. B. Y. Shekunov, P. Taylor, and J. G. Grossmann. Structural phenomena in hydrogel drug systems. J. Cryst. Growth 198–199:1335–1339 (1999).

    Article  Google Scholar 

  100. B. Y. Shekunov, J. C. Feeley, A. H. L. Chow, H. H. Y. Tong, and P. York. Physical properties of supercritically-processed and micronized powders for respiratory drug delivery. KONA Powder Part. 20:178–187 (2002).

    CAS  Google Scholar 

  101. D. F. Nicoli, D. C. McKenzie, and J. S. Wu. Application of dynamic light scattering to particle size analysis of macromolecules. Am. Lab. 23:32–40 (1991).

    Google Scholar 

  102. J. Weyermann, D. Lochmann, C. Georgens, I. Rais, J. Kreuter, M. Karas, M. Wolkenhauer, and A. Zimmer. Physicochemical characterisation of cationic polybutylcyanoacrylat-nanoparticles by fluorescence correlation spectroscopy. Eur. J. Pharm. Biopharm. 58:25–35 (2004).

    Article  PubMed  CAS  Google Scholar 

  103. W. Schrof, J. Klingler, S. Rozouvan, and D. Horn. Raman correlation spectroscopy: a method for studying chemical composition and dynamics of disperse systems. Phys. Rev. E 57:R2523–R2526 (1998).

    Google Scholar 

  104. I. A. Marshall, J. P. Mitchell, and W. D. Griffiths. The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer. J. Aerosol Sci. 22:73–89 (1991).

    Article  CAS  Google Scholar 

  105. W. R. Foss and N. Egilmez-Reynolds. Assessment of the API AeroSizer for measuring the particle size distribution of dry powder aerosols. Proceedings of the Conference on Respiratory Drug Delivery, Palm Harbor, FL, VII:407–410 (2000).

  106. A. Kamiya, M. Sakagami, M. Hindle, and P. R. Byron. Aerodynamic sizing of metered dose inhalers: an evaluation of the Andersen and next generation pharmaceutical impactors and their USP methods. J. Pharm. Sci. 93:1828–1837 (2004).

    Article  PubMed  CAS  Google Scholar 

  107. P. Mikkanen, M. Moisio, J. Ristimaki, T. Ronkko, J. Keskinen, and T. Korpiharji. Measuring DPI charge properties using ELPI. Proceedings of the Conference on Respiratory Drug Delivery, Palm Desert, CA, IX:465–467 (2004).

  108. J. C. Keil, R. Kotian, and J. Peart. Using and interpreting aerosol electrostatic data from electrical low pressure impactor. Proceedings of the Conference on Respiratory Drug Delivery, Boca Raton, FL, X:605–608 (2006).

  109. H. H. Y. Tong, B. Y. Shekunov, P. York, and A. H. L. Chow. Thermal analysis of trace levels of polymorphic impurity in salmeterol xinafoate samples. Pharm. Res. 20:1423–1429 (2003).

    Article  PubMed  CAS  Google Scholar 

  110. W. Witt, U. Köhler, and J. List. Direct imaging of very fast particles opens the application of the powerful (dry) dispersion for size and shape characterization. PARTEC 2004, Nürnberg.

  111. A. H. Boer, D. Gjaltema, W. Witt, and H. W. Frijlink. The use of laser diffraction technique for the characterisation of the aerosol cloud from inhalation device. Proceedings of the Conference on Respiratory Drug Delivery, Palm Harbor, FL, VII:585–588 (2000).

  112. D. R. Roberts and F. J. Romay. Relationship of stage mensuration data to the performance of new and used cascade impactors. J. Aerosol Med. 18:396–413 (2005).

    Article  PubMed  Google Scholar 

  113. J. E. Brockmann and D. J. Rader. APS response to nonspherical particles and experimental determination of dynamic shape factor. Aerosol Sci. Tech. 13:162–172 (1990).

    Article  Google Scholar 

  114. R. P. Chhabra, L. Agarwal, and N. K. Sinha. Drag on non-spherical particles: an evaluation of available methods. Powder Technol. 101:288–295 (1999).

    Article  CAS  Google Scholar 

  115. G. H. Ganser. A rational approach to drug prediction of spherical and nonspherical particles. Powder Technol. 77:143–152 (1993).

    Article  CAS  Google Scholar 

  116. J. Baldyga, M. Henczka, and B. Y. Shekunov. Fluid dynamics, mass transfer, and particle formation in supercritical fluids. In P. York, U. B. Kompella, and B. Y. Shekunov (eds.), Supercritical Fluid Technology for Drug Product Development, Marcel Dekker Series, 2004, 91–157.

  117. P. Mougin and D. Wikinson. In situ measurement of particle size during the crystallization of l-glutamic acid under two polymorphic forms: influence of crystal habit on ultrasonic attenuation measurements. Cryst. Growth Des. 2:227–234 (2002).

    Article  CAS  Google Scholar 

  118. I. Zbicinski, C. Strumillo, and A. Delag. Drying kinetics and particle residence time in spray drying. Dry. Technol. 20: 1751–1768 (2002).

    Article  CAS  Google Scholar 

  119. C. Dem, M. Egen, M. Krüger, and Juürgen Popp. Understanding the spray design process through single droplet investigations. Proceedings of the Conference on Respiratory Drug Delivery, Boca Raton, FL, 10:257–266 (2006).

  120. A. R. Heath, P. D. Fawell, P. A. Bahri, and J. D. Swift. Estimating average particle size by focused beam reflectance measurement (FBRM). Part. Part. Syst. Charact. 19:84–95 (2002).

    Article  Google Scholar 

  121. L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain. Applications of process analytical technology to crystallization processes. FDA CDER, Rockville, MD, 2003, pp 1–46.

    Google Scholar 

  122. D. C. Watts (2004). Process analytical technology (PAT): what’s in a name?http://www.fda.gov/cder/OPS/PATCommissionerSem2004/frame.htm.

Download references

Acknowledgment

One of the authors (Henry H. Y. Tong) would like to acknowledge the financial support of Macao Polytechnic Institute [Project No. RP/ESS-7/2005].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Y. Shekunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shekunov, B.Y., Chattopadhyay, P., Tong, H.H.Y. et al. Particle Size Analysis in Pharmaceutics: Principles, Methods and Applications. Pharm Res 24, 203–227 (2007). https://doi.org/10.1007/s11095-006-9146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9146-7

Key words

Navigation