Skip to main content
Log in

Solid Lipid Nanoparticles (SLN) and Oil-Loaded SLN Studied by Spectrofluorometry and Raman Spectroscopy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Recently, colloidal dispersions made of mixtures from solid and liquid lipids have been described to overcome the poor drug loading capacity of solid lipid nanoparticles (SLN). It has been proposed that these nanostructured lipid carriers (NLC) are composed of oily droplets, which are embedded in a solid lipid matrix. High loading capacities and controlled release characteristics have been claimed. It is the objective of the present paper to investigate these new NLC particles in more detail to obtain insights into their structure.

Methods

Colloidal lipid dispersions were produced by high-pressure homogenization. Particle sizes were estimated by laser diffraction and photon correlation spectroscopy. The hydrophobic fluorescent marker nile red (NR) was used as model drug, and by fluorometric spectroscopy, the molecular environment (polarity) was elucidated because of solvatochromism of NR. The packaging of the lipid nanoparticles was investigated by Raman spectroscopy and by densimetry. The light propagation in lipid nanodispersions was examined by refractometry to obtain further insights into the nanostructural compositions of the carriers.

Results

Fluorometric spectroscopy clearly demonstrates that NLC nanoparticles offer two nanocompartments of different polarity to accommodate NR. Nevertheless, in both compartments, NR experiences less protection from the outer water phase than in a nanoemulsion. In conventional SLN, lipid crystallization leads to the expulsion of the lipophilic NR from the solid lipid. Measurements performed by densimetry and Raman spectroscopy confirm the idea of intact glyceryl behenate lattices in spite of oil loading. The lipid crystals are not disturbed in their structure as it could be suggested in case of oil incorporation. Refractometric data reveal the idea of light protection because of incorporation of sensitive drug molecules in NLC.

Conclusion

Neither SLN nor NLC lipid nanoparticles did show any advantage with respect to incorporation rate compared to conventional nanoemulsions. The experimental data let us conclude that NLC lipid nanoparticles are not spherical solid lipid particles with embedded liquid droplets, but they are rather solid platelets with oil present between the solid platelet and the surfactant layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Siekmann K. Westesen (1992) ArticleTitleSubmicron-sized parenteral carrier systems based on solid lipids Pharm. Pharmacol. Lett. 1 123–126

    Google Scholar 

  2. A. Dingler. Feste Lipid-Nanopartikel als kolloidale Wirkstoffträgersysteme zur dermalen Applikation, PhD Thesis, Berlin, 1998.

  3. R. H. Müller W. Mehnert J.-S. Lucks C. Schwarz A. z. Mühlen H. Weyhers C. Freitas D. Rühl (1995) ArticleTitleSolid lipid nanoparticles (SLN)—An alternative colloidal carrier system for controlled drug delivery Eur. J. Biopharm. 41 62–69

    Google Scholar 

  4. R. H. Müller K. Mäder S. Gohla (2000) ArticleTitleSolid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art Eur. J. Biopharm. 50 161–177 Occurrence Handle10.1016/S0939-6411(00)00087-4

    Article  Google Scholar 

  5. W. Mehnert K. Mäder (2001) ArticleTitleSolid lipid nanoparticles: production, characterization and applications Adv. Drug Deliv. Rev. 47 165–196 Occurrence Handle10.1016/S0169-409X(01)00105-3 Occurrence Handle11311991

    Article  PubMed  Google Scholar 

  6. K. Westesen H. Bunjes M. H. J. Koch (1997) ArticleTitlePhysicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential J. Control. Release 48 223–236 Occurrence Handle10.1016/S0168-3659(97)00046-1

    Article  Google Scholar 

  7. K. Westesen B. Siekmann (1997) ArticleTitleInvestigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles Int. J. Pharm. 151 35–45 Occurrence Handle10.1016/S0378-5173(97)04890-4

    Article  Google Scholar 

  8. V. Jenning A. F. Thünemann S. H. Gohla (2000) ArticleTitleCharacterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids Int. J. Pharm. 199 167–177 Occurrence Handle10.1016/S0378-5173(00)00378-1 Occurrence Handle10802410

    Article  PubMed  Google Scholar 

  9. R. H. Müller M. Radtke S. A. Wissing (2002) ArticleTitleNanostructured lipid matrices for improved microencapsulation of drugs Int. J. Pharm. 242 121–128 Occurrence Handle10.1016/S0378-5173(02)00180-1 Occurrence Handle12176234

    Article  PubMed  Google Scholar 

  10. V. Jenning K. Mäder S. H. Gohla (2000) ArticleTitleSolid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: a 1H-NMR study Int. J. Pharm. 25 15–21 Occurrence Handle10.1016/S0378-5173(00)00462-2

    Article  Google Scholar 

  11. A. Hantzsch (1922) ArticleTitleÜber die Halochromie und “Solvatochromie” des Dibenzalacetons und einfacherer Ketone, sowie ihrer Ketochloride Chem. Ber. 55 953–979

    Google Scholar 

  12. P. Greenspan S. D. Fowler (1985) ArticleTitleSpectrofluorometric studies of the lipid probe nile red J. Lipid Res. 26 781–789 Occurrence Handle4031658

    PubMed  Google Scholar 

  13. M. Bockisch (1993) Nahrungsfette und-öle Ulmer Stuttgart

    Google Scholar 

  14. A. Fischer-Carius. Untersuchungen an extrudierten und sphäronisierten Matrixpellets mit retardierter Wirkstofffreigabe, PhD Thesis, Berlin, 1998.

  15. H. Bunjes K. Westesen M. H. J. Koch (1996) ArticleTitleCrystallization tendency and polymorphic transitions in triglyceride nanoparticles Int. J. Pharm. 129 159–173 Occurrence Handle10.1016/0378-5173(95)04286-5

    Article  Google Scholar 

  16. InstitutionalAuthorNameISO/DIS13320-1 (1997) Korngrößenanalyse—Leitfaden für Laserbeugungsverfahren Beuth Verlag Berlin, Wein and Zürich

    Google Scholar 

  17. K. Jores W. Mehnert M. Drechsler H. Bunjes C. Johann K. Mäder (2004) ArticleTitleInvestigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy J. Control. Release 95 217–227 Occurrence Handle10.1016/j.jconrel.2003.11.012 Occurrence Handle14980770

    Article  PubMed  Google Scholar 

  18. C. Olbrich O. Kayser A. Lamprecht C. Kneuer C. M. Lehr R. H. Müller (2000) Interactions of fluorescent solid lipid nanoparticles (SLN) with macrophage-like cells visualized by CLSM International Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology APV/APGI Berlin 331–332

    Google Scholar 

  19. M. M. Davis H. B. Hetzer (1966) ArticleTitleTitrimetric and equilibrium studies using indicators related to nile blue A Anal. Chem. 38 451–461 Occurrence Handle10.1021/ac60235a020

    Article  Google Scholar 

  20. B. Siekmann K. Westesen (1994) ArticleTitleThermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles Coll. Surfaces, B 3 159–175

    Google Scholar 

  21. K. Westesen H. Bunjes (1995) ArticleTitleDo nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int. J. Pharm. 115 129–131 Occurrence Handle10.1016/0378-5173(94)00347-8

    Article  Google Scholar 

  22. S. Liedtke, K. Jores, W. Mehnert, K. Mäder, Possibilities of non-invasive physicochemical characterisation of colloidal drug carriers, 27th Intern. Symp. Control. Rel. Bioact. Mater., Vol. 27, Controlled Release Society, Paris (2000) pp. 1088–1089.

  23. S. Udenfriend (1962) Fluorescence Assay in Biology and Medicine Academic Press New York

    Google Scholar 

  24. S. Wartewig R. Neubert (2002) ArticleTitleNicht-invasive Analysenmethoden der Schwingungsspektroskopie in der pharmazeutischen Forschung Pharm. Ind. 64 863–869

    Google Scholar 

  25. B. Schrader (Eds) (1995) Infrared and Raman Spectroscopy, Methods and Applications VCH Weinheim

    Google Scholar 

  26. P. Tandon G. Förster R. Neubert S. Wartewig (2000) ArticleTitlePhase transition in oleic acid as studied by X-ray diffraction and FT-Raman spectroscopy J. Mol. Struct. 524 IssueID27 201–215 Occurrence Handle10.1016/S0022-2860(00)00378-1

    Article  Google Scholar 

  27. R. Mendelsohn D. J. Moore (1998) ArticleTitleVibrational spectroscopic studies of lipid domains in biomembranes and model systems Chem. Phys. Lipids 96 141–157 Occurrence Handle10.1016/S0009-3084(98)00085-1 Occurrence Handle9871985

    Article  PubMed  Google Scholar 

  28. K. Jores W. Mehnert K. Mäder (2003) ArticleTitlePhysicochemical investigations on solid lipid nanoparticles (SLN) and on oil-loaded solid lipid nanoparticles: A NMR- and ESR-study Pharm. Res. 20 1274–1283 Occurrence Handle10.1023/A:1025065418309 Occurrence Handle12948026

    Article  PubMed  Google Scholar 

  29. V. Jenning. Feste Lipid-Nanopartikel (SLN™) als Trägersystem für die dermale Applikation von Retinol: Wirkstoffinkorporation, -freisetzung und Struktur, PhD Thesis, Berlin, 1999.

  30. D. Precht (1988) Fat crystal structure in cream and butter N. Garti K. Sato (Eds) Crystallization and Polymorphisms of Fats and Fatty Acids Marcel Dekker Inc. New York 305–361

    Google Scholar 

  31. V. Jenning S. Gohla (2000) ArticleTitleComparison of wax and glyceride solid lipid nanoparticles (SLN™) Int. J. Pharm. 196 219–222 Occurrence Handle10699722

    PubMed  Google Scholar 

  32. K. Jores W. Mehnert K. Mäder (2003) ArticleTitlePhysicochemical investigations on solid lipid nanoparticles (SLN) and on oil-loaded solid lipid nanoparticles: a nuclear magnetic resonance and electron spin resonance study Pharm. Res. 20 1274–1283 Occurrence Handle10.1023/A:1025065418309 Occurrence Handle12948026

    Article  PubMed  Google Scholar 

  33. C. Blümer K. Mäder. Isostatic Ultra High pressure effects on supercooled melts in colloidal triglyceride dispersions. Pharm. Res., accepted (2005).

Download references

Acknowledgment

Katja Jores was supported by Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Mäder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jores, K., Haberland, A., Wartewig, S. et al. Solid Lipid Nanoparticles (SLN) and Oil-Loaded SLN Studied by Spectrofluorometry and Raman Spectroscopy. Pharm Res 22, 1887–1897 (2005). https://doi.org/10.1007/s11095-005-7148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-7148-5

Key Words

Navigation