Skip to main content
Log in

Enhanced Intracellular Uptake of Sterically Stabilized Liposomal Doxorubicin in Vitro Resulting in Improved Antitumor Activity in Vivo

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To investigate the correlation between the in vitro intracellular uptake and the in vivo antitumor activity of anticancer drugs delivered by sterically stabilized liposomes (SSL).

Methods

Arginine-glycine-aspartic acid (RGD) peptide or RGD mimetic (RGDm) was coupled onto the surface of SSL to obtain the cell-binding carrier to facilitate the intracellular delivery of the encapsulated drugs. DOX-loaded SSL (SSL-DOX), DOX-loaded RGD-modified SSL (RGD-SSL-DOX) and DOX-loaded RGDm-modified SSL (RGDm-SSL-DOX) were prepared by lipid film dispersion followed by remote loading of DOX. The intracellular uptake of DOX from the various liposomal formulations was evaluated in vitro with melanoma B16 cells, and the pharmacokinetics, biodistribution, and antitumor activity were compared in C57BL/6 mice carrying melanoma B16 tumors.

Results

In vitro intracellular uptake of DOX by B16 cells and in vivo antitumor activity in terms of tumor growth inhibition and mice survival time prolongation for various liposomal DOX were in the following order: RGD-SSL-DOX > RGDm-SSL-DOX > SSL-DOX. The mean survival time of the mice treated with RGD-SSL-DOX, RGDm-SSL-DOX, and SSL-DOX was 55, 49, and 44 days, respectively. The three liposomal DOX formulations produced very close DOX accumulation in tumor, which is significantly higher than that of free DOX. RGD- or RGDm-SSL-DOX demonstrated prolonged circulation time similar to that of SSL-DOX, whereas they showed significantly lower DOX level in blood and remarkably higher uptake by spleen than SSL-DOX.

Conclusions

Enhanced intracellular uptake of DOX encapsulated in SSL could produce an improved therapeutic effect for the melanoma B16 tumors. Enhancing intracellular delivery of the anticancer drugs encapsulated in SSL may be a promising strategy to improve their therapeutic efficacy for solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chol:

cholesterol

DOX:

doxorubicin

DSPE-PEG:

methoxypolyetheleneglycol (MW 2000)-distearylphosphatidylethanolamine

DSPE-PEG-BTC:

1,2-dioleyol-sn-glycero-3-phosphoethanolamine-n-[poly(ethyleneglycol)]-N-benzotriazole carbonate, PEG MW 3400

EPR:

the effect of enhanced permeability and retention

PBS:

phosphate-buffered solution

HEPES:

4-(2-hydroxyethyl)piperazine-1-ethane-sulfonic acid

RGD:

arginine-glycine-aspartic acid

RGDm:

RGD mimetic

RGD-SSL:

RGD-modified SSL

RGD-SSL-DOX:

DOX-loaded RGD-SSL

RGDm-SSL:

RGDm-modified SSL

RGDm-SSL-DOX:

DOX-loaded RGDm-SSL

SPC:

soya phosphatidylcholine

SSL:

sterically stabilized liposomes

SSL-DOX:

DOX-loaded SSL

References

  1. E. Forssen M. Willis (1998) ArticleTitleLigand-targeted liposomes Adv. Drug Deliv. Rev. 29 249–271 Occurrence Handle1:CAS:528:DyaK2sXotVOrsbc%3D Occurrence Handle10837594

    CAS  PubMed  Google Scholar 

  2. J. N. Moreira R. Gaspar T. M. Allen (2001) ArticleTitleTargeting Stealth liposomes in a murine model of human small cell lung cancer Biochim. Biophys. Acta 1515 167–176 Occurrence Handle1:CAS:528:DC%2BD3MXosFKru7s%3D Occurrence Handle11718672

    CAS  PubMed  Google Scholar 

  3. J. W. Park D. B. Kirpotin K. Hong R. Shalaby Y. Shao U. Nielsen J. Marks D. Papahadjopoulos (2000) ArticleTitleAnti-HER2 immunoliposomes: enhanced efficacy via intracellular delivery [abstract] Proc. Am. Assoc. Cancer Res. 41 524

    Google Scholar 

  4. A. Gabizon H. Shmeeda A. T. Horowitz S. Zalipsky (2004) ArticleTitleTumor cell targeting of liposome entrapped drugs with phospholipid-anchored folic acid-PEG conjugates Adv. Drug Deliv. Rev. 56 1177–1192 Occurrence Handle1:CAS:528:DC%2BD2cXjtF2rtLs%3D Occurrence Handle15094214

    CAS  PubMed  Google Scholar 

  5. S. Dedhar (1995) ArticleTitleIntegrin mediated signal transduction in oncogenesis: an overiew Cancer Metastasis Rev. 14 165–172 Occurrence Handle1:CAS:528:DyaK28XmslGn Occurrence Handle8548866

    CAS  PubMed  Google Scholar 

  6. E. Ruoslahti (1996) ArticleTitleRGD and other recognition sequences for integrins Annu. Rev. Cell Dev. Biol. 12 697–715 Occurrence Handle1:CAS:528:DyaK28XnsFClur0%3D Occurrence Handle8970741

    CAS  PubMed  Google Scholar 

  7. K. Triantafilou Y. Takada M. Triantafilou (2001) ArticleTitleMechanisms of integrin-mediated virus attachment and internalization process Crit. Rev. Immunol. 21 311–322 Occurrence Handle1:STN:280:DC%2BD387ovFSktw%3D%3D Occurrence Handle11922076

    CAS  PubMed  Google Scholar 

  8. R. R. Isberg G. Tran Van Nhieu (1994) ArticleTitleBinding and internalization of microorganisms by integrin receptors Trends Microbiol. 2 10–14 Occurrence Handle1:STN:280:ByuB3MvpvVE%3D Occurrence Handle8162429

    CAS  PubMed  Google Scholar 

  9. S. L. Hart A. M. Knight R. P. Harbottle A. Mistry H. D. Hunger D. F. Cutler R. Williamson C. Coutelle (1994) ArticleTitleCell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide J. Biol. Chem. 269 12468–12474 Occurrence Handle1:CAS:528:DyaK2cXjt1Shtr4%3D Occurrence Handle8175653

    CAS  PubMed  Google Scholar 

  10. J. D. Wencel-Drake A. L. Frelinger M. G. Dieter S. C. Lam (1993) ArticleTitleArg-Gly-Asp-dependent occupancy of GPIIb/IIIa by applaggin: evidence for internalization and cycling of a platelet integrin Blood 81 62–69 Occurrence Handle1:CAS:528:DyaK3sXhsVCiurg%3D Occurrence Handle8417803

    CAS  PubMed  Google Scholar 

  11. R. Pasqualini E. Koivunen E. Ruoslahti (1997) ArticleTitleAlpha v integrins as receptors for tumor targeting by circulating ligands Nat. Biotechnol. 15 542–546 Occurrence Handle1:CAS:528:DyaK2sXjslSqsrg%3D Occurrence Handle9181576

    CAS  PubMed  Google Scholar 

  12. V. Pijuan-Thompson C. L. Gladson (1997) ArticleTitleLigation of integrin αvβ1 is required for internalization of vitronectin by integrin αvβ3 J. Biol. Chem. 272 2736–2743 Occurrence Handle1:CAS:528:DyaK2sXpsleksA%3D%3D Occurrence Handle9006912

    CAS  PubMed  Google Scholar 

  13. Y. Aoki S. Hosaka S. Kawa K. Kiyosawa (2001) ArticleTitlePotential tumor-targeting peptide vector of histidylated oligolysine conjugated to a tumor-homing RGD motif Cancer Gene Ther. 8 783–787 Occurrence Handle1:CAS:528:DC%2BD3MXnvVejtr4%3D Occurrence Handle11687901

    CAS  PubMed  Google Scholar 

  14. H. Hosseinkhani Y. Tabata (2004) ArticleTitlePEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin J. Control. Release 97 157–171 Occurrence Handle1:CAS:528:DC%2BD2cXjvFOntLc%3D Occurrence Handle15147813

    CAS  PubMed  Google Scholar 

  15. J. D. Food M. Bednarski R. Frausto S. Guccione R. A. Reisfeld R. Xiang D. A. Cheresh (2002) ArticleTitleTumor regression by targeted gene delivery to the neovasculature Science 296 2404–2407 Occurrence Handle12089446

    PubMed  Google Scholar 

  16. K. Kurohane Y. Namba N. Oku (2000) ArticleTitleLiposomes modified with a synthetic Arg-Gly-Asp mimetic inhibit lung metastasis of B16BL6 melanoma cells Life Sci. 68 273–281 Occurrence Handle1:CAS:528:DC%2BD3MXoslGl Occurrence Handle11191643

    CAS  PubMed  Google Scholar 

  17. G. Haran R. Cohen L. K. Bar Y. Barenholz (1993) ArticleTitleTransmembrane ammonium sulfate gradient in liposomes produce efficient and stable entrapment of amphipathic weak bases Biochim. Biophys. Acta 1151 201–215 Occurrence Handle1:CAS:528:DyaK2cXjsl2huw%3D%3D Occurrence Handle8373796

    CAS  PubMed  Google Scholar 

  18. S. Shinozawa Y. Mimaki Y. Araki (1980) ArticleTitleDetermination of the concentration of adriamycin and its metabolites in the serum and tissues of ehrlich carcinoma-bearing mice by high-performance liquid chromatography J. Chromatogr. 196 463–469 Occurrence Handle1:CAS:528:DyaL3cXlsl2ht7Y%3D Occurrence Handle7430305

    CAS  PubMed  Google Scholar 

  19. W. L. Lu X. R. Qi Q. Zhang R. Y. Li G. L. Wang R. J. Zhang S. L. Wei (2004) ArticleTitleA pegylated liposomal platform: pharmacokinetics, pharmacodynamics, and toxicity in mice using doxorubicin as a model drug J. Pharmacol. Sci. 95 381–389 Occurrence Handle1:CAS:528:DC%2BD2cXmtFektro%3D Occurrence Handle15272215

    CAS  PubMed  Google Scholar 

  20. F. Yuan M. Dellian D. Fukumura M. Leunig D. A. Berk V. P. Torchilin R. K. Jain (1995) ArticleTitleVascular permeability in a human tumor xenograft: molecular size dependence and cutoff size Cancer Res. 55 3752–3756 Occurrence Handle1:CAS:528:DyaK2MXnvVelsLc%3D Occurrence Handle7641188

    CAS  PubMed  Google Scholar 

  21. D. Kirpotin J. W. Park K. Hong Y. Shao G. Golbern W. W. Zheng O. Meyer C. C. Benz D. Papahadiopoulos (1998) NoChapterTitle D. D. Lasic D. Papahadjopoulos (Eds) Medical Applications of Liposomes Elsiver Science B.V. Amsterdam 325–345

    Google Scholar 

  22. P. S. Uster P. K. Working J. Vaage (1998) ArticleTitlePegylated liposomal doxorubicin (DOXILR®, CAELYXR®) distribution in tumor models observed with confocal laser scanning microscopy Int. J. Pharm. 162 77–86 Occurrence Handle1:CAS:528:DyaK1cXitVeqt7k%3D

    CAS  Google Scholar 

  23. P. Sapra T. M. Allen (2002) ArticleTitleInternalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs Cancer Res. 62 7190–7194 Occurrence Handle1:CAS:528:DC%2BD3sXhtVyrtQ%3D%3D Occurrence Handle12499256

    CAS  PubMed  Google Scholar 

  24. H. Hashizume P. Baluk S. Morikawa J. W. McLea G. Thurston S. Roberge R. K. Jain D. M. McDonald (2000) ArticleTitleOpenings between defective endothelial cells explain tumor vessel leakiness Am. J. Pathol. 156 1363–1380 Occurrence Handle1:STN:280:DC%2BD3c3hs1Kntg%3D%3D Occurrence Handle10751361

    CAS  PubMed  Google Scholar 

  25. J. Savill I. Dransfield N. Hogg C. Haslett (1990) ArticleTitleVitronectin receptor-mediated phagocytosis of cells undergoing apoptosis Nature 343 170–173 Occurrence Handle1:CAS:528:DyaK3cXhtFOitro%3D Occurrence Handle1688647

    CAS  PubMed  Google Scholar 

  26. B. Singh N. Rawlings A. Kaur (2001) ArticleTitleExpression of integrin alpha v beta 3 in pig, dog and cattle Histol. Histopathol. 16 1037–1046 Occurrence Handle1:CAS:528:DC%2BD3MXpt1Srt7w%3D Occurrence Handle11642723

    CAS  PubMed  Google Scholar 

  27. M. J. Turka D. J. Watersb P. S. Low (2004) ArticleTitleFolate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma Cancer Lett. 213 165–172 Occurrence Handle15327831

    PubMed  Google Scholar 

  28. H. Linuma K. Maruyama K. Okinaga K. Sasaki T. Sekine O. Ishida N. Ogiwaa K. Johkura Y. Yonemura (2002) ArticleTitleIntracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposomes on peritoneal dissemination of gastric cancer Int. J. Cancer 99 130–137 Occurrence Handle11948504

    PubMed  Google Scholar 

  29. N. Emanuel E. Kedar E. Bolotin N. I. Smorodinsky Y. Barenholz (1996) ArticleTitleTargeted delivery of doxorubicin via sterically stabilized immunoliposomes: pharmacokinetics and biodistribution in tumor-bearing mice Pharm. Res. 13 861–868 Occurrence Handle1:CAS:528:DyaK28Xjs1yrtrc%3D Occurrence Handle8792423

    CAS  PubMed  Google Scholar 

  30. P. C. Brooks R. A. Clark D. A. Cheresh (1994) ArticleTitleRequirement of vascular integrin alpha v beta 3 for angiogenesis Science 264 IssueID5158 569–571 Occurrence Handle1:CAS:528:DyaK2cXjt1Sis7w%3D Occurrence Handle7512751

    CAS  PubMed  Google Scholar 

  31. R. M. Schiffelers G. A. Koning T. L. M. Hagen M. Fens A. J. Schraa A. Janssen R. J. Kok G. Molema G. Storm (2003) ArticleTitleAnti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin J. Control. Release 91 115–122 Occurrence Handle1:CAS:528:DC%2BD3sXmsVSkurw%3D Occurrence Handle12932643

    CAS  PubMed  Google Scholar 

  32. S. Zitzmann V. Ehemann M. Schwab (2002) ArticleTitleArginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo Cancer Res. 62 5139–5143 Occurrence Handle1:CAS:528:DC%2BD38Xnt1ynsrc%3D Occurrence Handle12234975

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, XB., Huang, Y., Lu, Wl. et al. Enhanced Intracellular Uptake of Sterically Stabilized Liposomal Doxorubicin in Vitro Resulting in Improved Antitumor Activity in Vivo. Pharm Res 22, 933–939 (2005). https://doi.org/10.1007/s11095-005-4588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-4588-x

Key words

Navigation