Skip to main content
Log in

The Influence of Water Content of Triglyceride Oils on the Solubility of Steroids

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose.

To determine if hydration of long- and medium-chain triglyceride oils (long = soybean and olive, medium = Miglyol 812) has a significant effect on the ability to solubize the model hydrophobic compounds progesterone, estradiol, and testosterone.

Methods.

Soybean, olive, and Miglyol 812 oils were treated in one of two ways: hydrated or desiccated (hydrated, then dried). Solubility of 3H-labeled progesterone, estradiol, and testosterone in the triglycerides was measured by liquid scintillation counting.

Results.

Both hydration state and chain length of the triglycerides were shown to have a significant influence on the solubility of steroids. Solubility of estradiol hemihydrate and testosterone monohydrate in hydrated triglycerides is decreased by about 30%–40% compared with desiccated oils. The solubility of anhydrous testosterone was decreased by hydration of the oils due to conversion to the monohydrate crystalline form. In contrast, the solubility of progesterone was insensitive to the state of hydration of all oils.

Conclusions.

Hydration of triglyceride oils caused a significant decrease in the solubility of steroids, which may form hydrates or hemihydrates. Results suggest the need for knowledge of the hydration state of triglyceride oils to be used as pharmaceutical excipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. J. R. Robinson. Introduction: semi-solid formulations for oral drug delivery. Bulletin Technique Gattefosse 89:11–13 (1996).

    Google Scholar 

  2. 2. A. J. Humberstone and W. N. Charman. Lipid-based vehicles for the oral delivery of poorly water-soluble drugs. Adv. Drug Del. Rev 25:103–128 (1997).

    Article  CAS  Google Scholar 

  3. 3. B. J. Aungst. Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. J. Pharm. Sci. 82:979–987 (1993).

    CAS  PubMed  Google Scholar 

  4. 4. A. T. Serajuddin, P. C. Sheen, D. Mufson, D. F. Berstein, and M. A. Augustine. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersion. J. Pharm. Sci. 77:414–417 (1988).

    CAS  PubMed  Google Scholar 

  5. 5. N. H. Shah, M. T. Carvajal, C. I. Patel, M. H. Infeld, and A. W. Malick. Self-emulsifying drug delivery systems (SEDDS) with polyglycolysed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int. J. Pharm. 106:15–23 (1994).

    Article  CAS  Google Scholar 

  6. 6. R. A. Myers and V. Stella. Systemic bioavailability of penclomidine (NSC-338720) from oil-in-water emulsions administered intraduodenally to rats. Int. J. Pharm. 78:217–226 (1992).

    Article  CAS  Google Scholar 

  7. 7. R. A. Schwendener and H. Schott. Lipophilic1-beta-D-arabinofuranosyl cytosine derivatives in liposomal formulations for oral and parenteral antileukemic therapy in the murine L1210 leukemia model. J. Cancer Res. Clin. Oncol.w 122:723–726 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. 8. Y. Cao, M. Marra, and B. Anderson. Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles. J. Pharm. Sci. 93:2768–2779 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. 9. U. Jain, W. Higuchi, C. Liu, P. Lee, and N. Mazer. Cholesterol thermodynamic activity determinations in bile salt-lecithin-cholesterol systems and cholesterol-rich liquid crystalline mesophase formation. Pharm. Res. 9:792–799 (1992).

    CAS  PubMed  Google Scholar 

  10. 10. E. Shefter and T. Higuchi. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. J. Pharm. Sci. 52:781–791 (1963).

    CAS  PubMed  Google Scholar 

  11. 11. A. Thakkar and N. Hall. Micellar solubilization of testosterone III: dissolution behavior of testosterone in aqueous solutions of selected surfactants. J. Pharm. Sci. 58:68–71 (1969).

    CAS  PubMed  Google Scholar 

  12. 12. B. Haner and D. Norton. Crystal data. I. For some pregnenes and pregnadienes. Acta Crystallogr. 17:1610 (1964).

    CAS  Google Scholar 

  13. 13. B. Jerslev, S. Frokjaer, and P. Thorbek. Organic solid phase analysis II. Two unexpected cases of pseudopolymorphism. Arch. Pharm. Chemi. Sci. Ed 9:123–130 (1981).

    CAS  Google Scholar 

  14. 14. H. Fung and T. Higuchi. Molecular interactions and solubility of polar nonelectrolytes in nonpolar solvents. J. Pharm. Sci. 60:1782–1788 (1971).

    CAS  PubMed  Google Scholar 

  15. 15. Y. Yamaoka, R. Roberts, and V. Stella. Low-melting phenytoin prodrugs as alternative oral delivery methods for phenytoin: a model for other high-melting sparingly water-soluble drugs. J. Pharm. Sci. 72:400–405 (1983).

    CAS  PubMed  Google Scholar 

  16. 16. B. K. Kang, J. S. Lee, S. K. Chon, S. Y. Jeong, S. H. Yuk, G. Khang, H. B. Lee, and S. H. Cho. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 274:65–73 (2004).

    CAS  PubMed  Google Scholar 

  17. 17. C. Malcolmson, C. Satra, S. Kantaria, A. Sidhu, and M. J. Lawrence. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. J. Pharm. Sci. 87:109–116 (1998).

    CAS  PubMed  Google Scholar 

  18. 18. T. R. Kommuru, B. Gurley, M. A. Khan, and I. K. Reddy. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm. 212:233–246 (2001).

    CAS  PubMed  Google Scholar 

  19. 19. E. Lamcharfi, G. Kunesch, C. Meyer, and B. Robert. Investigation of cyclodextrin inclusion compounds using FT-IR and Raman spectroscopy. Spectrochimica Acta Part A 51:1861–1870 (1995).

    Google Scholar 

  20. 20. F. Parker and K. Bhaskar. Self-association of cholesterol and its interaction with triglycerides. An IR study. Biochemistry 7:1286–1290 (1968).

    CAS  PubMed  Google Scholar 

  21. 21. H. Zhu and D. Grant. Influence of water activity in organic solvent + water mixtures on the nature of the crystallizing drug phase. 2. Ampicillin. Int. J. Pharm. 139:33–43 (1996).

    CAS  Google Scholar 

  22. 22. J. De Smidt, J. Fokkens, H. Grijseels, and D. Crommelin. Dissolution of theophylline monohydrate and anhydrous theophylline in buffer solutions. J. Pharm. Sci. 75:497–501 (1986).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Michael Bummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Land, L., Li, P. & Bummer, P. The Influence of Water Content of Triglyceride Oils on the Solubility of Steroids. Pharm Res 22, 784–788 (2005). https://doi.org/10.1007/s11095-005-2595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2595-6

Key Words:

Navigation