Skip to main content

Advertisement

Log in

Effect of Particle Size of Nanospheres and Microspheres on the Cellular-Association and Cytotoxicity of Paclitaxel in 4T1 Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose.

To compare the effect of size of delivery systems on the cell-association and in vitro cytotoxicity of paclitaxel.

Methods.

Four sizes of PLGA-paclitaxel particles were prepared to study the effect of particle size on the cell-association of paclitaxel in 4T1 monolayer in the presence, and absence, of BCRP inhibitor, endocytic inhibitor, and P-glycoprotein (P-gp) inhibitor. Paclitaxel cell-association studies were repeated in Caco-2, Cor-L23/R, and bovine brain microvessel endothelial cells (BBMECs), as well as the association of etoposide in 4T1 cells. Cytotoxicity of paclitaxel to 4T1 cells delivered in nanospheres was compared to microspheres.

Results.

The concentration of paclitaxel and etoposide associated with 4T1 cells was 4.8 and 29 times greater, respectively, as the size increased from 310 to 2077 nm. Paclitaxel association consistently increased in Caco-2 and Cor-L23/R as the size of the delivery system increased. The endocytic inhibitor, 2-deoxyglucose, significantly decreased the cellular paclitaxel association when delivered by nanospheres but not microspheres. Consistent with the cell-association results, paclitaxel was thrice more cytotoxic to 4T1 cells when delivered in microspheres.

Conclusions.

Cell-association of paclitaxel increased in 4T1, Caco-2, and Cor-L23/R as particle size increased. Paclitaxel delivered from 1-μm microspheres was thrice more cytotoxic to 4T1 cells compared to the drug delivered from nanospheres or solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. American Cancer Society Inc. Cancer Facts and Figures 2004. No. 5008.04. Available at http://www.cancer.org/downloads/STT/CAFF_finalPWSecured.pdf.

  2. 2. S. B. Horwitz, D. Cohen, S. Rao, I. Ringel, H. J. Shen, and C. P. Yang. Taxol: mechanisms of action and resistance. J. Natl. Cancer Inst. Monogr. 15:55–61 (1993).

    PubMed  Google Scholar 

  3. 3. M. A. Jordon and L. Wilson. Microtubule polymerization dynamics, mitotic block, and cell death by paclitaxel at low concentrations. In G. I. George, T. T. Chen, I. Ojima, and D. M. Vyas (eds.), Taxane Anti-Cancer Agents: Basic Science and Current Status, Vol. 583, ACS Symposium Series, American Chemical Society, Washington D.C., 1995, pp. 138–153.

    Google Scholar 

  4. 4. C. L. Vogel and J. M. Nabholtz. Monotherapy of metastatic breast cancer: a review of newer agents. Oncologist 4:17–33 (1999).

    CAS  PubMed  Google Scholar 

  5. 5. A. K. Singla, A. Garg, and D. Aggarwal. Paclitaxel and its formulations. Int. J. Pharm. 235:179–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. 6. R. Panchagnula. Pharmaceutical aspects of paclitaxel. Int. J. Pharm. 172:1–15 (1998).

    Article  CAS  Google Scholar 

  7. 7. A. B. Dhanikula and R. Panchagnula. Localized paclitaxel delivery. Int. J. Pharm. 183:85–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. 8. R. M. Straubinger and A. Sharma, U. S. Sharma, and S. V. Balasubramanian. Pharmacology and antitumor effect of novel paclitaxel formulations. In G. I. George, T. T. Chen, I. Ojima, and D. M. Vyas (eds.), Taxane Anti-Cancer Agents: Basic Science and Current Status, Vol. 583, ACS Symposium Series, John Wiley ‘ Sons, Inc., Somerset, N.J. 1995, pp. 111–123.

    Google Scholar 

  9. 9. N. Authier, J. P. Gillet, J. Fialip, A. Eschalier, and F. Coudore. Description of a short-term Taxol-induced nociceptive neuropathy in rats. Brain Res. 887:239–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. 10. H. Gelderblom, J. Verweij, K. Nooter, and A. Sparreboom. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 37:1590–1598 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. 11. M. M. Amiji, P. K. Lai, D. B. Shenoy, and M. Rao. Intratumoral administration of paclitaxel in an in situ gelling poloxamer 407 formulation. Pharm. Dev. Technol. 7:195–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. 12. J. K. Jackson, K. C. Skinner, L. Burgess, T. Sun, W. L. Hunter, and H. M. Burt. Paclitaxel-loaded crosslinked hyaluronic acid films for the prevention of postsurgical adhesions. Pharm. Res. 19:411–417 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. 13. P. P. Constantinides, K. J. Lambert, A. K. Tustian, B. Schneider, S. Lalji, W. Ma, B. Wentzel, D. Kessler, D. Worah, and S. C. Quay. Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel. Pharm. Res. 17:175–182 (2000).

    CAS  PubMed  Google Scholar 

  14. 14. P. Simamora, R. M. Dannenfelser, S. E. Tabibi, and S. H. Yalkowsky. Emulsion formulations for intravenous administration of paclitaxel. PDA J. Pharm. Sci. Technol. 52:170–172 (1998).

    CAS  PubMed  Google Scholar 

  15. 15. P. Kan, Z. B. Chen, C. J. Lee, and I. M. Chu. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J. Controlled Release 58:271–278 (1999).

    CAS  Google Scholar 

  16. 16. C. Eng, A. M. Mauer, G. F. Fleming, D. Bertucci, J. Rotmensch, R. H. Jacobs, and M. J. Ratain. Phase I study of pegylated liposomal doxorubicin, paclitaxel, and cisplatin in patients with advanced solid tumors. Ann. Oncol. 12:1743–1747 (2001).

    CAS  PubMed  Google Scholar 

  17. 17. N. V. Koshkina, J. C. Waldrep, L. E. Roberts, E. Golunski, S. Melton, and V. Knight. Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin. Cancer Res. 7:3258–3262 (2001).

    CAS  PubMed  Google Scholar 

  18. 18. E. C. Unger, T. P. McCreery, R. H. Sweitzer, V. E. Caldwell, and Y. Wu. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest. Radiol. 33:886–892 (1998).

    CAS  PubMed  Google Scholar 

  19. 19. E. Harper, W. Dang, R. G. Lapidus, and R. I. Garver Jr. Enhanced efficacy of a novel controlled release paclitaxel formulation (PACLIMER delivery system) for local-regional therapy of lung cancer tumor nodules in mice. Clin. Cancer Res. 5:4242–4248 (1999).

    CAS  PubMed  Google Scholar 

  20. 20. S. K. Dordunoo, J. K. Jackson, L. A. Arsenault, A. M. Oktaba, W. L. Hunter, and H. M. Burt. Taxol encapsulation in poly(epsilon-caprolactone) microspheres. Cancer Chemother. Pharmacol. 36:279–282 (1995).

    CAS  PubMed  Google Scholar 

  21. 21. S. S. Feng, G. F. Huang, and L. Mu. Nanospheres of biodegradable polymers: a system for clinical administration of an anticancer drug paclitaxel (Taxol). Ann. Acad. Med. Singapore 29:633–639 (2000).

    CAS  PubMed  Google Scholar 

  22. 22. H. M. Burt, J. K. Jackson, S. K. Bains, R. T. Liggins, A. M. Oktaba, A. L. Arsenault, and W. L. Hunter. Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (d,l-lactic acid). Cancer Lett. 88:73–79 (1995).

    CAS  PubMed  Google Scholar 

  23. 23. R. Cavalli, O. Caputo, and M. R. Gasco. Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur. J. Pharm. Sci. 10:305–309 (2000).

    CAS  PubMed  Google Scholar 

  24. 24. T. Chandy, G. H. Rao, R. F. Wilson, and G. S. Das. Development of poly(Lactic acid)/chitosan co-matrix microspheres: controlled release of taxol-heparin for preventing restenosis. Drug Deliv. 8:77–86 (2001).

    CAS  PubMed  Google Scholar 

  25. 25. G. S. Das, G. H. R. Rao, R. F. Wilson, and T. Chandy. Controlled delivery of taxol from poly(ethylene glycol)-coated poly(lactic acid) microspheres. J. Biomed. Mater. Res. 55:96–103 (2001).

    CAS  PubMed  Google Scholar 

  26. 26. S. Y. Kim and Y. M. Lee. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials 22:1697–1704 (2001).

    CAS  PubMed  Google Scholar 

  27. 27. K. E. Lee, B. K. Kim, and S. H. Yuk. Biodegradable polymeric nanospheres formed by temperature-induced phase transition in a mixture of poly(lactide-co-glycolide) and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. Biomacromolecules 3:1115–1119 (2002).

    CAS  PubMed  Google Scholar 

  28. 28. R. T. Liggins and H. M. Burt. Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int. J. Pharm. 222:19–33 (2001).

    CAS  PubMed  Google Scholar 

  29. 29. A. Miglietta, R. Cavalli, C. Bocca, L. Gabriel, and M. R. Gasco. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int. J. Pharm. 210:61–67 (2000).

    CAS  PubMed  Google Scholar 

  30. 30. H. Sato, Y. M. Wang, I. Adachi, and I. Horikoshi. Pharmacokinetic study of taxol-loaded poly(lactic-co-glycolic acid) microspheres containing isopropyl myristate after targeted delivery to the lung in mice. Biol. Pharm. Bull. 19:1596–1601 (1996).

    CAS  PubMed  Google Scholar 

  31. 31. H. Suh, B. Jeong, R. Rathi, and S. W. Kim. Regulation of smooth muscle cell proliferation using paclitaxel-loaded poly(ethylene oxide)-poly(lactide/glycolide) nanospheres. J. Biomed. Mater. Res. 42:331–338 (1998).

    CAS  PubMed  Google Scholar 

  32. 32. Y. M. Wang, H. Sato, I. Adachi, and I. Horikoshi. Preparation and characterization of poly(lactic-co-glycolic acid) microspheres for targeted delivery of a novel anticancer agent, taxol. Chem. Pharm. Bull. (Tokyo) 44:1935–1940 (1996).

    CAS  Google Scholar 

  33. 33. S. Feng and G. Huang. Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers. J. Control. Rel. 71:53–69 (2001).

    CAS  Google Scholar 

  34. 34. L. Mu and S. S. Feng. Fabrication, characterization and in vitro release of paclitaxel (Taxol) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Rel. 76:239–254 (2001).

    CAS  Google Scholar 

  35. 35. L. Mu and S. S. Feng. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol). J. Controlled Release 80:129–144 (2002).

    CAS  Google Scholar 

  36. 36. A. Lamprecht, U. Schafer, and C. M. Lehr. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res. 18:788–793 (2001).

    CAS  PubMed  Google Scholar 

  37. 37. M. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Levy. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13:1838–1845 (1996).

    CAS  PubMed  Google Scholar 

  38. 38. M. P. Desai, V. Labhasetwar, E. Walter, R. J. Levy, and G. L. Amidon. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 14:1568–1573 (1997).

    CAS  PubMed  Google Scholar 

  39. 39. M. Paul, R. Durand, Y. Boulard, T. Fusai, C. Fernandez, D. Rivollet, M. Deniau, and A. Astier. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J. Drug Target. 5:481–490 (1998).

    CAS  PubMed  Google Scholar 

  40. 40. J. Kunta, J. Yan, V. D. Makhey, and P. J. Sinko. Active efflux kinetics of etoposide from rabbit small intestine and colon. Biopharm. Drug Dispos. 21:83–93 (2000).

    CAS  PubMed  Google Scholar 

  41. 41. Y. Zheng, Y. Ikuno, M. Ohj, S. Kusaka, R. Jiang, O. Cekic, M. Sawa, and Y. Tano. Platelet-derived Growth Factor Receptor Kinase Inhibitor AG1295 and Inhibition of Experimental Proliferative Vitreoretinopathy. Jpn. J. Ophthalmol. 47:158–165 (2003).

    CAS  PubMed  Google Scholar 

  42. 42. Y. Abe, M. Ueshige, M. Takeuchi, M. Ishii, and Y. Akagawa. Cytotoxicity of antimicrobial tissue conditioners containing silver-zeolite. Int. J. Prosthodont. 16:141–144 (2003).

    PubMed  Google Scholar 

  43. 43. L. K. Shao and D. C. Locke. Determination of paclitaxel and related taxanes in bulk drug and injectable dosage forms by reversed phase liquid chromatography. Anal. Chem. 69:2008–2016 (1997).

    CAS  PubMed  Google Scholar 

  44. 44. J. C. Shaw, J. R. Chen, and D. Chow. Preformulation study of etoposide: identification of physicochemical characteristics responsible for the low and erratic oral bioavailability of etoposide. Pharm. Res. 6:408–412 (1989).

    PubMed  Google Scholar 

  45. 45. L. Brannon-Peppas and J. O. Blanchette. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56:1649–1659 (2004).

    CAS  PubMed  Google Scholar 

  46. 46. S. De and D. H. Robinson. Particle size and temperature effect on the physical stability of plga nanospheres and microspheres containing bodipy. AAPS PharmSciTech. Available at 5: http://www.aapspharmscitech.org/articles/pt0504/pt050453/pt050453.pdf (2004).

    Google Scholar 

  47. 47. M. Ravi Kumar, G. Hellermann, R. F. Lockey, and S. S. Mohapatra. Nanoparticle-mediated gene delivery: state of the art. Expert Opin. Biol. Ther. 4:1213–1224 (2004).

    CAS  PubMed  Google Scholar 

  48. 48. L. Bonhomme-Faivre, A. Pelloquin, S. Tardivel, S. Urien, M. C. Mathieu, V. Castagne, B. Lacour, and R. Farinotti. Recombinant interleukin-2 treatment decreases P-glycoprotein activity and paclitaxel metabolism in mice. Anticancer Drugs 13:51–57 (2002).

    CAS  PubMed  Google Scholar 

  49. 49. R. V. Kondratov, P. G. Komarov, Y. Becker, A. Ewenson, and A. V. Gudkov. Small molecules that dramatically alter multidrug resistance phenotype by modulating the substrate specificity of P-glycoprotein. Proc. Natl. Acad. Sci. USA 98:14078–14083 (2001).

    CAS  PubMed  Google Scholar 

  50. 50. H. Burger, H. van Tol, A. W. Boersma, M. Brok, E. A. Wiemer, G. Stoter, and K. Nooter. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104:2940–2942 (2004).

    CAS  PubMed  Google Scholar 

  51. 51. A. Suvannasankha, H. Minderman, L. O’Loughlin, T. Nakanishi, L. A. Ford, W. R. Greco, M. Wetzler, D. D. Ross, and M. R. Baer. Breast cancer resistance protein (BCRP/MXR/ABCG2) in adult acute lymphoblastic leukaemia: frequent expression and possible correlation with shorter disease-free survival. Br. J. Haematol. 127:392–398 (2004).

    CAS  PubMed  Google Scholar 

  52. 52. X. Wang, T. Nitanda, M. Shi, M. Okamoto, T. Furukawa, Y. Sugimoto, S. Akiyama, and M. Baba. Induction of cellular resistance to nucleoside reverse transcriptase inhibitors by the wild-type breast cancer resistance protein. Biochem. Pharmacol. 68:1363–1370 (2004).

    CAS  PubMed  Google Scholar 

  53. 53. V. Vasilevko, A. Ghochikyan, N. Sadzikava, I. Petrushina, M. Tran, E. P. Cohen, P. J. Kesslak, D. H. Cribbs, G. L. Nicolson, and M. G. Agadjanyan. Immunization with a vaccine that combines the expression of MUC1 and B7 co-stimulatory molecules prolongs the survival of mice and delays the appearance of mouse mammary tumors. Clin. Exp. Metastasis 20:489–498 (2003).

    CAS  PubMed  Google Scholar 

  54. 54. J. E. Eyles, Z. C. Carpenter, H. O. Alpar, and E. D. Williamson. Immunological aspects of polymer microsphere vaccine delivery systems. J. Drug Target. 11:509–514 (2003).

    CAS  PubMed  Google Scholar 

  55. 55. G. Vassiliou and R. McPherson. Role of cholesteryl ester transfer protein in selective uptake of high density lipoprotein cholesteryl esters by adipocytes. J. Lipid Res. 45:1683–1693 (2004).

    CAS  PubMed  Google Scholar 

  56. 56. J. S. Popova and M. M. Rasenick. Clathrin-mediated endocytosis of m3 muscarinic receptors. Roles for Gbetagamma and tubulin. J. Biol. Chem. 279:30410–30418 (2004).

    CAS  PubMed  Google Scholar 

  57. 57. D. W. Miller, B. T. Keller, and R. T. Borchardt. Identification and distribution of insulin receptors on cultured bovine brain microvessel endothelial cells: possible function in insulin processing in the blood-brain barrier. J. Cell. Physiol. 161:333–341 (1994).

    CAS  PubMed  Google Scholar 

  58. 58. W. Liang, M. Buluc, C. van Breemen, and X. Wang. Vectorial Ca2+ release via ryanodine receptors contributes to Ca2+ extrusion from freshly isolated rabbit aortic endothelial cells. Cell Calcium 36:431–443 (2004).

    CAS  PubMed  Google Scholar 

  59. 59. F. F. Vargas, M. H. Osorio. U. S. Ryan, and M. De Jesus. Surface charge of endothelial cells estimated from electrophoretic mobility. Membr. Biochem. 8:221–227 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis H. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, S., Miller, D. & Robinson, D. Effect of Particle Size of Nanospheres and Microspheres on the Cellular-Association and Cytotoxicity of Paclitaxel in 4T1 Cells. Pharm Res 22, 766–775 (2005). https://doi.org/10.1007/s11095-005-2593-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2593-8

Key Words:

Navigation