Skip to main content

Advertisement

Log in

Intracellular Delivery of Bak BH3 Peptide by Microbubble-Enhanced Ultrasound

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose.

To investigate the possibility of intracellular delivery of Bak BH3 peptide using sonoporation effect by microbubble-enhanced ultrasound.

Methods.

HeLa and BJAB cells were exposed to 1.696-Mhz focused ultrasound with 2% microbubble contrast agents (OPTISON®). Cell-impermeable calcein was used as an indicator for successful sonoporation, and propidium iodide staining was used for cell viability assessment. Peptides were also exposed to ultrasound with OPTISON® and analyzed with mass spectrometry for evaluation of stability under ultrasound exposure. The effect of transduced Bak BH3 peptide was evaluated by the cell viability of successfully sonoporated cells.

Results.

Bak BH3 peptides did not undergo mechanical degradation with microbubble-enhanced ultrasound exposure. With the increase of acoustic energy exposure, the sonoporation efficiency saturated both in BJAB and HeLa cells, while direct cell death rate by ultrasound exposure tended to increase. When BJAB cells were treated with 100 ϜM Bak BH3 peptides, and ultrasound exposure with ultrasound contrast agents (OPTISON®), an increased 35% cell death was confirmed. On the other hand, although HeLa cells had a similar trend, they failed to exhibit statistical significance.

Conclusions.

Our results suggest that microbubble-enhanced focused ultrasound peptide transduction is possible. Further optimization of ultrasound exposure conditions may be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATCC:

American Type Culture Collection

BH3/4:

Bcl-2 homology 3/4

CW:

continuous wave

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

dimethyl sulfoxide

FBS:

fetal bovine serum

HIV:

human immunodeficiency virus

HPLC:

high-pressure liquid chromatography

LHRH:

luteinizing hormone releasing hormone

MALDI-TOF:

matrix-assisted laser desorption ionization-time-of-flight

PI:

propidium iodide

PTD:

protein-transduction domain

PW:

pulse wave

RF signals:

radiofrequency signals

References

  1. 1. M. Narita, S. Shimizu, T. Ito, T. Chittenden, R. J. Lutz, H. Matsuda, and Y. Tsujimoto. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95:14681–14686 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. 2. E. P. Holinger, T. Chittenden, and R. J. Lutz. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem. 274:13298–13304 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. 3. C. Moreau, P. F. Cartron, A. Hunt, K. Meflah, D. R. Green, G. Evan, F. M. Vallette, and P. Juin. Minimal BH3 peptides promote cell death by antagonizing anti-apoptotic proteins. J. Biol. Chem. 278:19426–19435 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. 4. A. D. Schimmer, D. W. Hedley, S. Chow, N. A. Pham, A. Chakrabartty, D. Bouchard, T. W. Mak, M. R. Trus, and M. D. Minden. The BH3 domain of BAD fused to the Antennapedia peptide induces apoptosis via its alpha helical structure and independent of Bcl-2. Cell Death Differ. 8:725–733 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. 5. H. L. Vieira, P. Boya, I. Cohen, C. El Hamel, D. Haouzi, S. Druillenec, A. S. Belzacq, C. Brenner, B. Roques, and G. Kroemer. Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 21:1963–1977 (2002).

    CAS  PubMed  Google Scholar 

  6. 6. S. S. Dharap and T. Minko. Targeted proapoptotic LHRH-BH3 peptide. Pharm. Res. 20:889–896 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. 7. S. S. Dharap, B. Qiu, G. C. Williams, P. Sinko, S. Stein, and T. Minko. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J. Control. Rel. 91:61–73 (2003).

    Article  CAS  Google Scholar 

  8. 8. Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105:1233–1239 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. 9. P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen. Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Ther. 10:1600–1607 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. 10. M. Shimamura, N. Sato, Y. Taniyama, S. Yamamoto, M. Endoh, H. Kurinami, M. Aoki, T. Ogihara, Y. Kaneda, and R. Morishita. Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Ther. 11:1532–1539 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. 11. S. Shimizu, A. Konishi, T. Kodama, and Y. Tsujimoto. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA 97:3100–3105 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. 12. R. Sugioka, S. Shimizu, T. Funatsu, H. Tamagawa, Y. Sawa, T. Kawakami, and Y. Tsujimoto. BH4-domain peptide from Bcl-xL exerts anti-apoptotic activity in vivo. Oncogene 22:8432–8440 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. 13. D. Klein, M. M. Ribeiro, V. Mendoza, S. Jayaraman, N. S. Kenyon, A. Pileggi, R. D. Molano, L. Inverardi, C. Ricordi, and R. L. Pastori. Delivery of Bcl-XL or its BH4 domain by protein transduction inhibits apoptosis in human islets. Biochem. Biophys. Res. Commun. 323:473–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. 14. M. Becker-Hapak, S. S. McAllister, and S. F. Dowdy. TAT-mediated protein transduction into mammalian cells. Methods 24:247–256 (2001).

    CAS  PubMed  Google Scholar 

  15. 15. D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269:10444–10450 (1994).

    CAS  PubMed  Google Scholar 

  16. 16. L. D. Walensky, A. L. Kung, I. Escher, T. J. Malia, S. Barbuto, R. D. Wright, G. Wagner, G. L. Verdine, and S. J. Korsmeyer. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. 17. C. M. Tempany, E. A. Stewart, N. McDannold, B. J. Quade, F. A. Jolesz, and K. Hynynen. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 226:897–905 (2003).

    PubMed  Google Scholar 

  18. 18. K. Hynynen, G. T. Clement, N. McDannold, N. Vykhodtseva, R. King, P. J. White, S. Vitek, and F. A. Jolesz. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn. Reson. Med. 52:100–107 (2004).

    Article  PubMed  Google Scholar 

  19. 19. K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–646 (2001).

    CAS  PubMed  Google Scholar 

  20. 20. M. Ward, J. Wu, and J. F. Chiu. Experimental study of the effects of Optison concentration on sonoporation in vitro. Ultrasound Med. Biol. 26:1169–1175 (2000).

    CAS  PubMed  Google Scholar 

  21. 21. H. R. Guzman, A. J. McNamara, D. X. Nguyen, and M. R. Prausnitz. Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: a unified explanation based on cell-to-bubble ratio and blast radius. Ultrasound Med. Biol. 29:1211–1222 (2003).

    PubMed  Google Scholar 

  22. 22. C. X. Deng, F. Sieling, H. Pan, and J. Cui. Ultrasound-induced cell membrane porosity. Ultrasound Med. Biol. 30:519–526 (2004).

    PubMed  Google Scholar 

  23. 23. H. R. Guzman, D. X. Nguyen, A. J. McNamara, and M. R. Prausnitz. Equilibrium loading of cells with macromolecules by ultrasound: effects of molecular size and acoustic energy. J. Pharm. Sci. 91:1693–1701 (2002).

    CAS  PubMed  Google Scholar 

  24. 24. H. R. Guzman, D. X. Nguyen, S. Khan, and M. R. Prausnitz. Ultrasound-mediated disruption of cell membranes. II. Heterogeneous effects on cells. J. Acoust. Soc. Am. 110:597–606 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Kinoshita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoshita, M., Hynynen, K. Intracellular Delivery of Bak BH3 Peptide by Microbubble-Enhanced Ultrasound. Pharm Res 22, 716–720 (2005). https://doi.org/10.1007/s11095-005-2586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2586-7

Key Words:

Navigation