Skip to main content
Log in

Selective Downregulation of Hepatic Cytochrome P450 Expression and Activity in a Rat Model of Inflammatory Pain

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

This study was designed to examine the effect of Freund’s complete adjuvant (FCA)-induced inflammation on liver P450 expression and activities in the first 7 days that followed a single FCA injection in the rat hindpaw.

Methods.

Rats were humanely sacrificed at regular time points, plasma and liver samples were collected, liver mRNA extracted, and liver microsomes prepared.

Results.

FCA injection led to the development of an acute inflammatory response evidenced by paw edema and increased alpha-1-acid glycoprotein (AGP) and total-nitrite (NOx) plasma concentrations. Plasma IL-6 levels were significantly higher in FCA-treated rats than in controls at 8 h post-FCA. Within 24 h, these changes were accompanied by a rapid decrease in total P450 contents in FCA-treated rat liver and the selective downregulation of specific CYP isoforms, as illustrated by decreased mRNA levels (CYP2B, CYP2C11, CYP3A1, and CYP2E1), protein contents (CYP2B, CYP2C11, and CYP2E1) or catalytic activities (CYP2C6, CYP2C11, and CYP2E1). CYP3A1 mRNA levels were severely decreased by FCA administration, whereas CYP3A2 mRNA and protein levels remained unchanged.

Conclusions.

These early biochemical and metabolic modifications may have pharmacokinetic and pharmacodynamic consequences when hepatically cleared drugs are administered to FCA-treated rats, especially within the first 24–72 h post-FCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGP:

α1-acid glycoprotein

ANOVA:

analysis of variance

API-ES:

atmospheric pressure ionization—electrospray

CYP:

cytochrome P450 isoform

DM:

dextromethorphan

DEX:

dextrorphan

DF:

diclofenac

ELISA:

enzyme-linked immunosorbent assay

FCA:

Freund’s complete adjuvant

HPLC/MS:

high-performance liquid chromatography/mass spectrometry

4-OH-DF:

4-hydroxy-diclofenac

IL:

interleukin

LOQ:

limit of quantification

LPS:

lipo-polysaccharide (E. coli endotoxin)

M:

mass of the parent compound

MH+:

molecular ion

m/z:

mass over charge ratio

MS:

mass spectrometry

NADPH:

nicotinamide adenosine diphosphate reduced form

NOx:

total nitrite levels; P450; cytochrome P450

SIM:

selected ion monitoring

SDS:

sodium dodecyl sulfate

TNF-α:

tumor necrosis factor-α

References

  1. 1. E. T. Morgan, M. B. Sewer, H. Iber, F. J. Gonzalez, Y. H. Lee, R. H. Tukey, S. Okino, T. Vu, Y. H. Chen, J. S. Sidhu, and C. J. Omiecinski. Physiological and pathophysiological regulation of cytochrome P450. Drug Metab. Dispos. 26:1232–1240 (1998).

    Google Scholar 

  2. 2. E. T. Morgan. Regulation of cytochromes P450 during inflammation and infection. Drug Metab. Rev. 29:1129–1188 (1997).

    Google Scholar 

  3. 3. T. L. Yaksh. Spinal systems and pain processing: development of novel analgesic drugs with mechanistically defined models. Trends Pharmacol. Sci. 20:329–337 (1999).

    Google Scholar 

  4. 4. G. L. Fraser, G. A. Gaudreau, P. B. Clarke, D. P. Menard, and M. N. Perkins. Antihyperalgesic effects of delta opioid agonists in a rat model of chronic inflammation. Br. J. Pharmacol. 129:1668– 1672 (2000).

    Google Scholar 

  5. 5. C. J. Woolf, A. Allchorne, B. Safieh-Garabedian, and S. Poole. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br. J. Pharmacol. 121:417–424 (1997).

    Google Scholar 

  6. 6. R. P. Carlson and P. B. Jacobson. Comparison of adjuvant and streptococcal cell wall-induced arthritis. In D. W. Morgan and L. A. Marshall (eds.), In Vivo Models of Inflammation. Birkhäuser, Boston, 1999, pp. 1–50.

    Google Scholar 

  7. 7. A. Toda, N. Ishii, T. Kihara, A. Nagamatsu, and H. Shimeno. Effect of adjuvant-induced arthritis on hepatic drug metabolism in rats. Xenobiotica 24:603–611 (1994).

    Google Scholar 

  8. 8. R. E. Pearce, C. J. McIntyre, A. Madan, U. Sanzgiri, A. J. Draper, FCA-Induced Downregulation of Liver P450s 69.P. L. Bullock, D. C. Cook, L. A. Burton, J. Latham, C. Nevins, and A. Parkinson. Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity. Arch. Biochem. Biophys. 331:145–169 (1996).

    Google Scholar 

  9. 9. T. Omura and R. Sato. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239:2370–2378 (1964).

    Google Scholar 

  10. 10. P. M. Whalley, D. Bakes, K. Grime, and R. J. Weaver. Rapid high-performance liquid chromatographic method for the separation of hydroxylated testosterone metabolites. J. Chromatogr. B. 760:281–288 (2001).

    Google Scholar 

  11. 11. M. B. Sewer and E. T. Morgan. Down-regulation of the expression of three major rat liver cytochrome P450S by endotoxin in vivo occurs independently of nitric oxide production. J. Pharmacol. Exp. Ther. 287:352–358 (1998).

    Google Scholar 

  12. 12. A. J. Sonderfan, M. P. Arlotto, D. R. Dutton, S. K. McMillen, and A. Parkinson. Regulation of testosterone hydroxylation by rat liver microsomal cytochrome P-450. Arch. Biochem. Biophys. 255:27–41 (1987).

    Google Scholar 

  13. 13. E. T. Morgan. Suppression of constitutive cytochrome P-450 gene expression in livers of rats undergoing an acute phase response to endotoxin. Mol. Pharmacol. 36:699–707 (1989).

    Google Scholar 

  14. 14. Z. Szekanecz, M. M. Halloran, M. V. Volin, J. M. Woods, R. M. Strieter, H. G. Kenneth III, S. L. Kunkel, M. D. Burdick, and A. E. Koch. Temporal expression of inflammatory cytokines and chemokines in rat adjuvant-induced arthritis. Arthritis Rheum. 43:1266–1277 (2000).

    Google Scholar 

  15. 15. M. B. Sewer, D. R. Koop, and E. T. Morgan. Differential inductive and suppressive effects of endotoxin and particulate irritants on hepatic and renal cytochrome P-450 expression. J. Pharmacol. Exp. Ther. 280:1445–1454 (1997).

    Google Scholar 

  16. 16. M. B. Sewer, D. R. Koop, and E. T. Morgan. Endotoxemia in rats is associated with induction of the P4504A subfamily and suppression of several other forms of cytochrome P450. Drug Metab. Dispos. 24:401–407 (1996).

    Google Scholar 

  17. 17. O. Khatsenko and Y. Kikkawa. Nitric oxide differentially affects constitutive cytochrome P450 isoforms in rat liver. J. Pharmacol. Exp. Ther. 280:1463–1470 (1997).

    Google Scholar 

  18. 18. T. Li-Masters and E. T. Morgan. Down-regulation of phenobarbital-induced cytochrome P4502B mRNAs and proteins by endotoxin in mice: independence from nitric oxide production by inducible nitric oxide synthase. Biochem. Pharmacol. 64:1703–1711 (2002).

    Google Scholar 

  19. 19. V. Nedelcheva and I. Gut. P450 in the rat and man: methods of investigation, substrate specificities and relevance to cancer. Xenobiotica 24:1151–1175 (1994).

    Google Scholar 

  20. 20. A. L. Roe, G. Warren, G. Hou, G. Howard, S. I. Shedlofsky, and R. A. Blouin. The effect of high dose endotoxin on CYP3A2 expression in the rat. Pharm. Res. 15:1603–1608 (1998).

    Google Scholar 

  21. 21. J. M. Huss, S. I. Wang, and C. B. Kasper. Differential glucocorticoid responses of CYP3A23 and CYP3A2 are mediated by selective binding of orphan nuclear receptors. Arch. Biochem. Biophys. 372:321–332 (1999).

    Google Scholar 

  22. 22. A. Mahnke, D. Strotkamp, P. H. Roos, W. G. Hanstein, G. G. Chabot, and P. Nef. Expression and inducibility of cytochrome P450 3A9 (CYP3A9) and other members of the CYP3A subfamily in rat liver. Arch. Biochem. Biophys. 337:62–68 (1997).

    Google Scholar 

  23. 23. T. E. Akiyama and F. J. Gonzalez. Regulation of P450 genes by liver-enriched transcription factors and nuclear receptors. Biochim. Biophys. Acta 1619:223–234 (2003).

    Google Scholar 

  24. 24. J. Hakkola, Y. Hu, and M. Ingelman-Sundberg. Mechanisms of down-regulation of CYP2E1 expression by inflammatory cytokines in rat hepatoma cells. J. Pharmacol. Exp. Ther. 304:1048–1054 (2003).

    Google Scholar 

  25. 25. K. W. Renton. Alteration of drug biotransformation and elimination during infection and inflammation. Pharmacol. Ther. 92: 147–163 (2001).

    Google Scholar 

  26. 26. C. Fang, S. Yoon, N. Tindberg, H. A. Jarvelainen, K. O. Lindros, and M. Ingelman-Sundberg. Hepatic expression of multiple acute phase proteins and down-regulation of nuclear receptors after acute endotoxin exposure. Biochem. Pharmacol. 67:1389–1397 (2004).

    Google Scholar 

  27. 27. D. E. Amacher and S. J. Schomaker. Ethylmorphine N-demethylase activity as a marker for cytochrome P450 CYP3A activity in rat hepatic microsomes. Toxicol. Lett. 94:115–125 (1998).

    Google Scholar 

  28. 28. B. Oesch-Bartlomowicz and F. Oesch. Cytochrome-P450 phosphorylation as a functional switch. Arch. Biochem. Biophys. 409:228–234 (2003).

    Google Scholar 

  29. 29. J. MacMicking, Q. W. Xie, and C. Nathan. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15:323–350 (1997).

    Google Scholar 

  30. 30. H. Moshage. Cytokines and the hepatic acute phase response. J. Pathol. 181:257–266 (1997).

    Google Scholar 

  31. 31. T. A. Samad, K. A. Moore, A. Sapirstein, S. Billet, A. Allchorne, S. Poole, J. V. Bonventre, and C. J. Woolf. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410:471–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. 32. A. L. Cooper, S. Brouwer, A. V. Turnbull, G. N. Luheshi, S. J. Hopkins, S. L. Kunkel, and N. J. Rothwell. Tumor necrosis factor-alpha and fever after peripheral inflammation in the rat. Am. J. Physiol. 267:R1431–R1436 (1994).

    Google Scholar 

  33. 33. G. N. Luheshi, A. Stefferl, A. V. Turnbull, M. J. Dascombe, S. Brouwer, S. J. Hopkins, and N. J. Rothwell. Febrile response to tissue inflammation involves both peripheral and brain IL-1 and TNF-alpha in the rat. Am. J. Physiol. 272:R862–R868 (1997).

    Google Scholar 

  34. 34. C. A. Dinarello. In L. R. Watkins and S. F. Maier (eds.), Cytokins and Pain, Birkhauser, Basel 1999, pp. 1–19.

    Google Scholar 

  35. 35. A. M. Bleau, M. C. Levitchi, H. Maurice, and P. Du Souich. Cytochrome P450 inactivation by serum from humans with a viral infection and serum from rabbits with a turpentine-induced inflammation: the role of cytokines. Br. J. Pharmacol. 130:1777– 1784 (2000).

    Google Scholar 

  36. 36. A. M. Bleau, P. Maurel, V. Pichette, F. Leblond, and P. du Souich. Interleukin-1beta, interleukin-6, tumour necrosis factor-alpha and interferon-gamma released by a viral infection and an aseptic inflammation reduce CYP1A1, 1A2 and 3A6 expression in rabbit hepatocytes. Eur. J. Pharmacol. 473:197–206 (2003).

    Google Scholar 

  37. 37. J. Q. Chen, A. Strom, J. A. Gustafsson, and E. T. Morgan. Suppression of the constitutive expression of cytochrome P-450 2C11 by cytokines and interferons in primary cultures of rat hepatocytes: comparison with induction of acute-phase genes and demonstration that CYP2C11 promoter sequences are involved in the suppressive response to interleukins 1 and 6. Mol. Pharmacol. 47:940–947 (1995).

    Google Scholar 

  38. 38. T. J. Carlson and R. E. Billings. Role of nitric oxide in the cytokine-mediated regulation of cytochrome P-450. Mol. Pharmacol. 49:796–801 (1996).

    Google Scholar 

  39. 39. E. T. Morgan, K. B. Thomas, R. Swanson, T. Vales, J. Hwang, and K. Wright. Selective suppression of cytochrome P-450 gene expression by interleukins 1 and 6 in rat liver. Biochim. Biophys. Acta 1219:475–483 (1994).

    Google Scholar 

  40. 40. E. Siewert, R. Bort, R. Kluge, P. C. Heinrich, J. Castell, and R. Jover. Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent. Hepatology 32:49–55 (2000).

    Google Scholar 

  41. 41. J. M. Pascussi, S. Gerbal-Chaloin, L. Pichard-Garcia, M. Daujat, J. M. Fabre, P. Maurel, and M. J. Vilarem. Interleukin-6 negatively regulates the expression of pregnane X receptor and constitutively activated receptor in primary human hepatocytes. Biochem. Biophys. Res. Commun. 274:707–713 (2000).

    Google Scholar 

  42. 42. S. Akira. IL-6-regulated transcription factors. Int. J. Biochem. Cell Biol. 29:1401–1418 (1997).

    Google Scholar 

  43. 43. R. Jover, R. Bort, M. J. Gomez-Lechon, and J. V. Castell. Down-regulation of human CYP3A4 by the inflammatory signal interleukin-6: molecular mechanism and transcription factors involved. FASEB J. 16:1799–1801 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Ducharme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Projean, D., Dautrey, S., Vu, H. et al. Selective Downregulation of Hepatic Cytochrome P450 Expression and Activity in a Rat Model of Inflammatory Pain. Pharm Res 22, 62–70 (2005). https://doi.org/10.1007/s11095-004-9010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-9010-6

Key Words:

Navigation