Skip to main content
Log in

Polymeric Micelles Based on Amphiphilic Scorpion-like Macromolecules: Novel Carriers for Water-Insoluble Drugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

The objective was to evaluate amphiphilic scorpion-like macromolecules (AScMs) as drug carriers for hydrophobic drugs.

Methods.

Indomethacin (IMC) was incorporated into two AScM micelles (M12P5 and M12P2) by the O/W emulsion technique. The influences of IMC:polymer feed ratio and molecular weight of the hydrophilic block of AScMs on the micelle size, IMC entrapment efficiency and release behavior were investigated. Furthermore, cytotoxicity of the AScMs was evaluated with human umbilical vein endothelial cells (HUVEC).

Results.

The maximal IMC entrapment efficiency in M12P5 and M12P2 micelles (72.3 and 20.2%, respectively) was obtained at ratios of 0.1 to 1 for indomethacin:polymer. The sizes of IMC-loaded M12P5 and M12P2 polymeric micelles were <20 nm with a narrow size distribution. In vitro release studies revealed that IMC released from M12P5 and M12P2 polymeric micelles showed sustained release behavior during the 24 h of experiment. Additionally, M12P5 and M12P2 polymeric micelles did not induce remarkable cytotoxicity against HUVEC cells at concentrations up to 1 and 0.5 mM, respectively.

Conclusions.

The amphiphilic scorpion-like macromolecules may be useful as novel drug carriers because of their small size, ability to encapsulate hydrophobic drugs and release them in a sustained manner as well as low cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AScMs:

amphiphilic scorpion-like macromolecules

DLS:

dynamic light scattering

DMF:

N,N-dimethylformamide

ECGS:

endothelial cell growth supplement

FBS:

fetal bovine serum

HUVEC:

human umbilical vein endothelial cells

IMC:

indomethacin

IMC-M12P5:

indomethacin-loaded M12P5 micelles

IMC-M12P2:

indomethacin-loaded M12P2 micelles

M12P5:

poly(ethylene glycol-5000)—mucic acid based amphiphilic scorpion-like macromolecules

M12P2:

poly(ethylene glycol-2000)—mucic acid based amphiphilic scorpion-like macromolecules

MTT:

3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide

PEG:

poly(ethylene glycol)

PTFE:

polytetrafluoroethylene

TEM:

transmission electron microscopy

References

  1. 1. S. Y. Kim, I. G. Shin, and Y. M. Lee. Amphiphilic diblock copolymeric nanospheres composed of methoxy poly(ethylene glycol) and glycolide: properties, cytotoxicity and drug release behaviors. Biomaterials 20:1033–1042 (1999).

    Google Scholar 

  2. 2. S. Y. Kim and Y. M. Lee. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly-(caprolactone) as novel anticancer drug carriers. Biomaterials 22:1697–1704 (2001).

    Google Scholar 

  3. 3. M. Liu, K. Kono, and J. M. J. Frechet. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J. Control. Rel. 65:121–131 (2000).

    Google Scholar 

  4. 4. A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Rel. 82:189–212 (2002).

    Google Scholar 

  5. 5. G. Kwon and T. Okano. Polymeric micelles as new drug carriers. Adv. Drug Del. Rev 21:107–116 (1996).

    Google Scholar 

  6. 6. K. Kataoka, A. Harada, and Y. Nagasaki. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Del. Rev. 47:113–131 (2001).

    Google Scholar 

  7. 7. Y. Kakizawa and K. Kataoka. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Del. Rev. 54:203–222 (2002).

    Google Scholar 

  8. 8. M. Yokoyama, A. Satoh, Y. Sakurai, T. Okano, Y. Matsumura, T. Kakizoe, and K. Kataoka. Incorporation of water-insoluble anti-cancer drug into polymeric micelles and control of their particle size. J. Control. Rel. 55:219–229 (1998).

    Google Scholar 

  9. 9. V. P. Torchilin. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Rel. 23:137–172 (2001).

    Google Scholar 

  10. 10. A. Krishnades, I. Rubinstein, and H. Onyuksel. Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm. Res. 20:297–302 (2003).

    Google Scholar 

  11. 11. R. Gref, M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blukn, and R. H. Muller. Stealth corona-core nano-particles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B. 18:301–313 (2000).

    Google Scholar 

  12. 12. M. Tobio, A. Sanchez, A. Vila, I. Soriano, C. Evora, J. L. Vila-Jato, and M. J. Alonso. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf. B. 18:315–323 (2000).

    Google Scholar 

  13. 13. H. Otsuka, Y. Nagasaki, and K. Kataoka. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Del. Rev. 55:403–419 (2003).

    Google Scholar 

  14. 14. F. Kohori, M. Yokoyama, K. Sakai, and T. Okano. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J. Control. Rel. 78:155–163 (2002).

    Google Scholar 

  15. 15. W. J. Lin, L. W. Juang, and C. C. Lin. Stability and release performance of a series of Pegylated copolymeric micelles. Pharm. Res. 20:668–673 (2003).

    Google Scholar 

  16. 16. L. Tian, L. Yam, N. Zhou, H. Tat, and K. E. Uhrich. Design, synthesis and characterization of amphiphilic scorpion-like macromolecules (AScMs). Macromolecules 37:538–543 (2004).

    Google Scholar 

  17. 17. S. C. Lee, C. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(caprolactone) copolymer as a carrier for paclitaxel. J. Control. Rel. 89:437–446 (2003).

    Google Scholar 

  18. 18. G. Fontana, M. Licciardi, S. Mansueto, D. Schillaci, and G. Giammona. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials 22:2857–2865 (2001).

    Google Scholar 

  19. 19. Y. S. Nam, H. S. Kang, J. Y. Park, T. G. Park, S. H. Han, and I. S. Chang. New micelle-like polymer aggregates made from PEI-PLGA diblock copolymers: micellar characteristics and cellular uptake. Biomaterials 24:2053–2059 (2003).

    Google Scholar 

  20. 20. S. B. La, T. Okano, and K. Kataoka. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(benzyl L-aspartate) block copolymer micelles. J. Pharm. Sci. 85:85–90 (1996).

    Google Scholar 

  21. 21. J. Djordjevic, B. Michniak, and K. E. Uhrich. Amphiphilic star-like macromolecules as novel carriers for topical delivery of non-steroidal anti-inflammatory drugs. AAPS PharmSci 5:1–12 (2003).

    Google Scholar 

  22. 22. Y. Hu, X. Jiang, Y. Ding, H. Ge, Y. Yuan, and C. Yang. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials 23:3193–3201 (2002).

    Google Scholar 

  23. 23. Y. Hu, X. Jiang, Y. Ding, L. Zhang, C. Yang, J. Zhang, J. Chen, and Y. Yang. Preparation and drug release behaviors of nimo-dipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles. Biomaterials 24:2395– 2404 (2003).

    Google Scholar 

  24. 24. G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control. Rel. 48:195–201 (1997).

    Google Scholar 

  25. 25. H. S. Yoo and T. G. Park. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J. Control. Rel. 70:63–70 (2001).

    Google Scholar 

  26. 26. T. Kawauchi, M. Isshiki, M. Taked, and M. Shibayama. Dynamic light scattering studies on poly(vinyl chloride) clusters and aggregates in tetrahydrofuran. Polym. 42:3875–3881 (2001).

    Google Scholar 

  27. 27. J. Djordjevic, M. Barch, B. Michniak, K. E. Uhrich. Novel block copolymeric micelles for drug delivery: loading and release of indomethacin. AAPS PharmSci. 5: Abstract W4111 (2003).

    Google Scholar 

  28. 28. H. Liu, S. Farrell, and K. E. Uhrich. Drug release characteristics of unimolecular polymeric micelles. J. Control. Rel. 68:167–174 (2000).

    Google Scholar 

  29. 29. I. G. Shin, S. Y. Kim, Y. M. Lee, C. S. Cho, and Y. K. Sung. Methoxy poly(ethylene glycol)/caprolactone amphiphilic block co-polymeric micelle containing indomethacin. I. Preparation and characterization. J. Control. Rel. 51:1–11 (1998).

    Google Scholar 

  30. 30. Y. Wan, W. Chen, J. Yang, J. Bei, and S. Wang. Biodegradable poly(L-lactide)-poly(ethylene glycol) multiblock copolymer: synthesis and evaluation of cell affinity. Biomaterials 24:2195–2203 (2003).

    Google Scholar 

  31. 31. J. Davda and V. Labhasetwar. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm. 233:51–59 (2002).

    Google Scholar 

  32. 32. Rapoport N. Stabilization and activation of Pluronic micelles for tumor-targeting drug delivery. Colloids Surf. B 16:93–111 (1999).

    Google Scholar 

  33. 33. C. Allen, J. Han, Y. Yu, D. Maysinger, and A. Eisenberg. Poly-caprolactone-β-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J. Control. Rel. 63:275–286 (2000).

    Google Scholar 

  34. 34. S. Cammas, T. Matsumoto, T. Okano, Y. Sakurai, and K. Kataoka. Design of functional polymeric micelles as site-specific drug vehicles based on poly(α-hydroxy ethylene oxide-co-β-benzyl L-aspartate) block copolymers. Mater. Sci. Eng. C 4:241– 247 (1997).

    Google Scholar 

  35. 35. A. S. Chauhan, S. Sridevi, K. B. Chalasani, A. K. Jain, S. K. Jain, N. K. Jain, and P. V. Diwan. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J. Control. Rel. 90:335–343 (2003).

    Google Scholar 

  36. 36. B. G. Yu, T. Okano, K. Kataoka, and G. Kwon. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J. Control. Rel. 53:131–136 (1998).

    Google Scholar 

  37. 37. A. Fini, G. Fazio, and G. Feroci. Solubility and solubilization properties of non-steroidal anti-inflammatory drugs. Int. J. Pharm. 126:95–102 (1995).

    Google Scholar 

  38. 38. S. Y. Kim, I. G. Shin, Y. M. Lee, C. S. Cho, and Y. K. Sung. Methoxy poly(ethylene glycol) and caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviors. J. Control. Rel. 51:13–22 (1998).

    Google Scholar 

  39. 39. G. Riess. Micellization of block copolymers. Prog. Polym. Sci. 28:1107–1170 (2003).

    Google Scholar 

  40. 40. M. C. Jones and J. C. Leroux. Polymeric micelles- a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48:101– 111 (1999).

    Google Scholar 

  41. 41. C. R. Heald, S. Stolnik, C. D. Matteis, M. C. Garnett, L. Illum, S. S. Davids, and F. A. M. Leermakers. Characterization of poly-(lactic acid):poly(ethyleneoxide) (PLE:PEG) nanoparticles using the self-consistent theory modeling approach. Colloids Surf., A. 212:57–64 (2003).

    Google Scholar 

  42. 42. H. R. Ihre, O. L. Padilla De Jesus, F. C. Szoka Jr., and J. M. J. Frechet. Polyester dendritic systems for drug delivery applications: design, synthesis and characterization. Bioconjugate Chem. 13:443–452 (2002).

    Google Scholar 

  43. 43. K. Avgoustakis, A. Beletsi, Z. Panagai, P. Klepetsanis, E. Livaniou, G. Evangelatos, and D. S. Ithakissios. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles. Int. J. Pharm. 259:115–127 (2003).

    Google Scholar 

  44. 44. I. S. Kim and S. H. Kim. Development of polymeric nanoparticulate drug delivery systems: evaluation of nanoparticles based on biotinylated poly(ethylene glycol) with sugar moiety. Int. J. Pharm. 257:195–203 (2003).

    Google Scholar 

  45. 45. R. Gref, P. Quellec, A. Sanchez, P. Calvo, E. Dellacherie, and M. J. Alonso. Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol) PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur. J. Pharm. Biopharm. 51:111–118 (2001).

    Google Scholar 

  46. 46. L. Yang and P. Alexandridis. Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr. Opin. Colloid Interface Sci. 5:132–143 (2000).

    Google Scholar 

  47. 47. H. Chakraborty, R. Banerjee, and M. Sarkar. Incorporation of NSAIDs in micelles: implication of structural switchover in drug-membrane interaction. Biophys. Chem. 104:315–325 (2003).

    Google Scholar 

  48. 48. G. A. Husseini, G. D. Myrup, W. G. Pitt, D. A. Christensen, and N. Rapoport. Factors affecting acoustically triggered release of drugs from polymeric micelles. J. Control. Rel. 69:43–52 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Uhrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djordjevic, J., Barch, M. & Uhrich, K. Polymeric Micelles Based on Amphiphilic Scorpion-like Macromolecules: Novel Carriers for Water-Insoluble Drugs. Pharm Res 22, 24–32 (2005). https://doi.org/10.1007/s11095-004-9005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-9005-3

Key words:

Navigation