Skip to main content
Log in

Ag – ZnO Nanocomposites Cause Cytotoxicity and Induce Cell Cycle Arrest in Human Gastric and Melanoma Cancer Cells

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Zinc oxide nanoparticles are used increasingly as antimicrobial and therapeutic agents, and the addition of metal ions such as silver may improve their potent cytotoxicity. However, there have been concerns about safety. In this work, we investigated the cytotoxic activity of newly synthesized silver/zinc oxide nanocomposites (Ag-ZnO NCs) versus ZnO nanoparticles (NPs) against human melanoma (A375) and gastric carcinoma (AGS). The cytotoxicity of Ag-ZnO NCs versus ZnO NPs was evaluated by cell viability assays and the cell cycle analyses were performed by flow cytometry using DAPI staining. Both ZnO NPs and Ag-ZnO NCs significantly reduced cell viability in a dose-dependent manner. We found that Ag-ZnO NCs cytotoxicity was lower than that of ZnO NPs in the same concentration range. Furthermore, the cytotoxicity caused by Ag-ZnO NCs and ZnO induced the accumulation of melanoma cells in S phase and gastric cancer cells in G2/M phase. It was concluded that Ag-ZnO NCs were less toxic than ZnO NPs. This approach provides a rational basis for evaluating the potential harm of ZnO NPs and Ag-ZnO NCs as food packaging materials and cancer therapy agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. R. Langer and D. A. Tirrell, Nature, 428, 487 – 492 (2001).

    Article  CAS  Google Scholar 

  2. J. Shi, A. R. Votruba, O. C. Farokhzad, et al., Nano Lett., 10, 3223 – 3230 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. H. Hong Y. Zhang, J. Sun, et al., Nano Today, 4, 399 – 413 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. I. Antsiferova, Rus. J. Non-Ferr. Met., 52, 120 – 124 (2011).

    Article  Google Scholar 

  5. A. Grobe and M. E. Rissanen, Recent Pat. Food Nutr. Agric., 4, 176 – 186 (2012).

    Article  PubMed  Google Scholar 

  6. M. Ahamed, M. S. Alsalhi, and M. K. Siddiqui, Clin. Chim. Acta, 411, 1841 – 1848 (2010).

    Article  PubMed  CAS  Google Scholar 

  7. T. Zhang, L. Wang, Q. Chen, et al., Yonsei Med. J., 55, 283 – 291 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. L. Brannon-Peppas and J. O. Blanchette. Adv. Drug Deliv. Rev., 56, 1649 – 1659 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. J. W. Rasmussen, E. Martinez, P. Louka, et al., Expert Opin. Drug Deliv., 7, 1063 – 1077 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. J. Zhou, N. S. Xu, and Z. L.Wang, Adv. Mater., 18, 2432 – 2435 (2006).

    Article  CAS  Google Scholar 

  11. S. T. Yang, J. H. Liu, J. Wang, et al., J. Nanosci. Nanotechnol., 10, 8638 – 8645 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. C. Wang, X. Hu, Y. Gao, et al., Biomed. Res. Int., 2015, 423287 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. I. Pujalte, I. Passagne, B. Brouillaud, et al., Part. Fibre Toxicol., 8, 10 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. R. Guan, T. Kang, F. Lu, et al., Nanoscale Res. Lett., 7, 602 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. P. P. Fu, Q. Xia, H. M. Hwang, et al., J. Food Drug Anal., 22, 64 – 75 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. X. Hu, S. Cook, P. Wang, et al., Sci. Total Environ., 407, 3070 – 3072 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, et al., Nanomedicine, 7, 184 – 192 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. A. Haider and I.-K. Kang. Adv. Mater. Sci. Eng., 2015, 165257 (2015).

    Article  CAS  Google Scholar 

  19. A. Hekmat, A. A. Saboury, and A. Divsalar. J. Biomed. Nanotechnol., 8, 968 – 982 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. Ö. A. Yýldýrým, H. E. Unalan, and C. Durucan, J. Am. Ceram. Soc., 96, 766 – 773 (2013).

    Article  CAS  Google Scholar 

  21. S. Arooj, S. Nazir, A. Nadhman, et al., Beilstein J. Nanotechnol., 6, 570 – 582 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. S. Hadizadeh, N. Najafzadeh, M. Mazani, et al., Biochem. Res. Int., 2014, 813457 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. N. Najafzadeh, M. Mazani, A. Abbasi, et al., Biomed. Pharmacother., 74, 243 – 251 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. N. C. Lim H. C. Freake and C. Bruckner. Chemistry, 11, 38 – 49 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. A. H. Shankar and A. S. Prasad, Am. J. Clin. Nutr., 68, 447S-463S (1998).

    Article  PubMed  CAS  Google Scholar 

  26. D. W. Choi and J. Y. Koh, Annu. Rev. Neurosci., 21, 347 – 375 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. C. M. Sayes, K. L. Reed, and D. B. Warheit, Toxicol. Sci., 97, 163 – 180 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. C. Hanley, J. Layne, A. Punnoose, et al., Nanotechnology, 19, 295103 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. L. V. Stebounova, A. Adamcakova-Dodd, J. S. Kim, et al., Part. Fibre Toxicol., 8, 1 (2011).

    Article  CAS  Google Scholar 

  30. S. Park, Y. K. Lee, M. Jung, et al., Inhal. Toxicol., 19, 59 – 65 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. F. Herzog, M. J. Clift, F. Piccapietra, et al., Part. Fibre Toxicol., 10, 1 (2013).

    Article  CAS  Google Scholar 

  32. R. Foldbjerg, P. Olesen, M. Hougaard, et al., Toxicol. Lett., 190, 156 – 162 (2009).

    Article  PubMed  CAS  Google Scholar 

  33. R. Foldbjerg, D. A. Dang, and H. Autrup. Arch. Toxicol., 85, 743 – 750 (2011).

    Article  PubMed  CAS  Google Scholar 

  34. P. V. AshaRani, G. Low, Kah Mun, M. P. Hande, et al., ACS Nano, 3, 279 – 290 (2009).

    Article  PubMed  CAS  Google Scholar 

  35. A. F. Ismail, M. M. Ali, and L. F. Ismail, J. Photochem. Photobiol. B, 138, 99 – 108 (2014).

  36. E. J. Yang, S. Kim, J. S. Kim, et al., Biomaterials, 33, 6858 – 6867 (2012).

    Article  PubMed  CAS  Google Scholar 

  37. S. Arora, J. Jain, J. Rajwade, et al., Toxicol. Lett., 179, 93 – 100 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. M. E. Samberg, E. G. Loboa, S. J. Oldenburg, et al., Nanomedicine, 7, 1197 – 1209 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. S. Sweet and G. Singh, Cancer Res., 55, 5164 – 5167 (1995).

    PubMed  CAS  Google Scholar 

  40. R. M. Mroz, R. P. Schins, H. Li, et al., J. Physiol. Pharmacol., 58, Suppl. 5, 461 – 470 (2007).

    PubMed  Google Scholar 

  41. T. Kang, R. Guan, X. Chen, et al., Nanoscale Res. Lett., 8, 1 – 8 (2013).

    Article  CAS  Google Scholar 

  42. S. C. Motshekga, S. S. Ray, M. S. Onyango, et al., J. Hazard. Mater., 262, 439 – 446 (2013).

    Article  PubMed  CAS  Google Scholar 

  43. I. Matai, A. Sachdev, P. Dubey, et al., Colloids Surf. B: Biointerf., 115, 359 – 367 (2014).

    Article  CAS  Google Scholar 

  44. M. Mahdavi Rad, N. Najafzadeh, A. Niapour, et al., Arak Med. Univ. J., 17, 74 – 83 (2014).

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ardabil University of Medical Sciences, Grant No 89350.

Author information

Authors and Affiliations

Authors

Contributions

N. N. supervised and coordinated the study and finalized the manuscript. The study design, data analyses, and manuscript writing were performed by N. N, M. M, N. T, and A. J. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Nowruz Najafzadeh.

Ethics declarations

The authors declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, M.M., Najafzadeh, N., Tata, N. et al. Ag – ZnO Nanocomposites Cause Cytotoxicity and Induce Cell Cycle Arrest in Human Gastric and Melanoma Cancer Cells. Pharm Chem J 52, 112–116 (2018). https://doi.org/10.1007/s11094-018-1774-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1774-9

Keywords

Navigation