Skip to main content
Log in

Thermal Plasma Synthesis of Superparamagnetic Iron Oxide Nanoparticles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Superparamagnetic iron oxide nanoparticles were synthesized by injecting ferrocene vapor and oxygen into an argon/helium DC thermal plasma. Size distributions of particles in the reactor exhaust were measured online using an aerosol extraction probe interfaced to a scanning mobility particle sizer, and particles were collected on transmission electron microscopy (TEM) grids and glass fiber filters for off-line characterization. The morphology, chemical and phase composition of the nanoparticles were characterized using TEM and X-ray diffraction, and the magnetic properties of the particles were analyzed with a vibrating sample magnetometer and a magnetic property measurement system. Aerosol at the reactor exhaust consisted of both single nanocrystals and small agglomerates, with a modal mobility diameter of 8–9 nm. Powder synthesized with optimum oxygen flow rate consisted primarily of magnetite (Fe3O4), and had a room-temperature saturation magnetization of 40.15 emu/g, with a coercivity and remanence of 26 Oe and 1.5 emu/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Int Mater Rev 49:125–170

    Article  Google Scholar 

  2. Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222–1244

    Article  Google Scholar 

  3. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D 36:R167–R181

    Article  ADS  Google Scholar 

  4. Gupta AK, Gupta M (2005) Biomater 26:3995–4021

    Article  Google Scholar 

  5. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Chem Rev 108:2064–2110

    Article  Google Scholar 

  6. Gao J, Gu H, Xu B (2009) Acct Chem Res 42:1097–1107

    Article  Google Scholar 

  7. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Adv Mater 22:2729–2742

    Article  Google Scholar 

  8. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  9. Ward J, Naik KS, Guthrie JA, Wilson D, Robinson PJ (1999) Radiol 210:459–466

    Google Scholar 

  10. Kumano S, Murakami T, Kim T, Hori M, Okada A, Sugiura T, Noguchi Y, Kawata S, Tomoda K, Nakamura H (2003) Am J Roentgen 181:1335–1339

    Google Scholar 

  11. Rabias I, Tsitrouli D, Karakosta E, Kehagias T, Diamantopoulos G, Fardis M, Stamopoulos D, Maris TG, Falaras P, Zouridakis N, Diamantis N, Panayotou G, Verganelakis DA, Drossopoulou GI, Tsilibari EC, Papavassiliou G (2010) Biomicrofluid 4:024111

    Article  Google Scholar 

  12. Jeong JR, Lee SJ, Kim JD, Shin SC (2004) Physica Stat Solid B 241:1593–1596

    Article  ADS  Google Scholar 

  13. Goya GF, Morales MP (2004) J Meta Nanocryst Mater 20–21:673–678

    Article  Google Scholar 

  14. Smolensky ED, Park HYE, Berquo TS, Pierre VC (2010) Contrast Media Mol Imaging 6:189–199

    Google Scholar 

  15. Teleki A, Suter M, Kidambi PR, Ergeneman O, Krumeich F, Nelson BJ, Pratsinis SE (2009) Chem Mater 21:2094–2100

    Article  Google Scholar 

  16. Boies AM, Roberts JT, Girshick SL, Zhang B, Nakamura T, Mochizuki A (2009) Nanotechnol 20:295604

    Article  Google Scholar 

  17. Calder S, Boies A, Lei P, Girshick S, Roberts J (2011) Chem Mater 23:2917–2921

    Article  Google Scholar 

  18. Yoshida T, Akashi K (1981) Trans Jpn Inst Met 22:371–378

    Google Scholar 

  19. Girshick SL, Chiu C-P, Muno R, Wu CY, Yang L, Singh SK, McMurry PH (1993) J Aerosol Sci 24:367–382

    Article  Google Scholar 

  20. Chou CH, Phillips J (1992) J Mater Res 7:2107–2113

    Article  ADS  Google Scholar 

  21. Vollath D, Szabo DV, Taylor RD, Willis JO, Sickafus KE (1995) Nanostruct Mater 6:941–944

    Article  Google Scholar 

  22. Vollath D, Szabo DV, Taylor RD, Willis JO (1997) J Mater Res 12:2175–2182

    Article  ADS  Google Scholar 

  23. Kalyanaraman R, Yoo S, Krupashankara MS, Sudarshan TS, Dowding RJ (1998) Nanostruct Mater 10:1379–1392

    Article  Google Scholar 

  24. Janzen C, Wiggers H, Knipping J, Roth P (2001) J Nanosci Nanotechnol 1:221–225

    Article  Google Scholar 

  25. Li SZ, Hong YC, Uhm HS, Li ZK (2004) Jpn J Appl Phys 43:7714–7717

    Article  ADS  Google Scholar 

  26. Zajickova L, Synek P, Jasek O, Elias M, David B, Bursik J, Pizurova N, Hanzlikova R, Lazar L (2009) Appl Surf Sci 255:5421–5424

    Article  ADS  Google Scholar 

  27. David B, Pizurova N, Schneeweiss O, Kudrle V, Jasek O, Synek P (2011) Jpn J Appl Phys 50:08JF11

    Article  Google Scholar 

  28. Synek P, Jasek O, Zajickova L, David B, Kudrle V, Pizurova N (2011) Mater Lett 65:982–984

    Article  Google Scholar 

  29. Bica I (1999) Mater Sci Engg B 68:5–9

    Article  Google Scholar 

  30. Balasubramaniam C, Khollam YB, Banerjee I, Bakare PP, Date SK, Das AK, Bhoraskar SV (2004) Mater Lett 58:3958–3962

    Article  Google Scholar 

  31. Banerjee I, Khollam YB, Balasubramanian C, Pasricha R, Bakare PP, Patil KR, Das AK, Bhoraskar SV (2006) Script Mater 54:1235–1240

    Article  Google Scholar 

  32. Chazelas C, Coudert JF, Jarrige J, Fauchais P (2006) J Eur Ceram Soc 26:3499–3507

    Article  Google Scholar 

  33. Banerjee I, Khollam YB, Mahapatra SK, Das AK, Bhoraskar SV (2010) J Vac Sci Technol A 28:1399–1403

    Article  Google Scholar 

  34. Subramanian V, Baskaran R, Krishnan H (2009) Aerosol Air Qual Res 9:172–186

    Google Scholar 

  35. McIlroy DN, Zhang D, Norton MG, O’Brien WL, Schwickert MM, Harp GR (2000) J Appl Phys 87:7213–7217

    Article  ADS  Google Scholar 

  36. McIlroy DN, Huso J, Kranov Y, Marchinek J, Ebert C, Moore S, Marji E, Gandy R, Hong YK, Norton MG, Cavalieri E, Benz R, Justus BL, Rosenberg A (2003) J Appl Phys 93:5643–5649

    Article  ADS  Google Scholar 

  37. Kouprine A, Gitzhofer F, Boulos M, Veres T (2006) Carbon 44:2593–2601

    Article  Google Scholar 

  38. Panchal V, Neergat M, Bhandarkar U (2011) J Nanopart Res 13:3825–3833

    Article  Google Scholar 

  39. Panchal V, Lahoti G, Bhandarkar U, Neergat M (2011) J Phys D 44:345205

    Article  Google Scholar 

  40. Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  41. Powell QH, Fotou GP, Kodas TT, Anderson BM (1997) Chem Mater 9:685–693

    Article  Google Scholar 

  42. Zhang B (2007) Thermal plasma synthesis and photoinduced coating of aluminum nanoparticles. PhD thesis, Univ Minnesota, Minneapolis

  43. Monte MJS, Santos LMNBF, Fulem M, Fonseca JMS, Sousa CAD (2006) J Chem Eng Data 51:757–766

    Article  Google Scholar 

  44. Jain R, Girshick SL, Heberlein JV, Mukherjee R, Zhang B, Nakamura T, Mochizuki A (2010) Plasma Chem Plasma Process 30:795–811

    Article  Google Scholar 

  45. Wang X, Hafiz J, Mukherjee R, Renault T, Heberlein J, Girshick SL, McMurry PH (2005) Plasma Chem Plasma Process 25:439–453

    Article  Google Scholar 

  46. Friedlander SK, Wang CS (1966) J Coll Interface Sci 22:126–132

    Article  Google Scholar 

  47. Benitez MJ, Mishra D, Szary P, Confalonieri GAB, Feyen M, Lu AH, Agudo L, Eggeler G, Petracic O, Zabel H (2011) J Phys Condens Matter 23:126003

    Article  ADS  Google Scholar 

  48. Danan H, Herr A, Meyer AJP (1968) J Appl Phys 39:669–670

    Article  ADS  Google Scholar 

  49. Berkowitz AE, Schuele WJ, Flanders PJ (1968) J Appl Phys 39:1261–1263

    Article  ADS  Google Scholar 

  50. Coey JMD (1971) Appl Phys Lett 27:1140–1142

    Article  Google Scholar 

  51. Frenkel J, Doefman J (1930) Nature 126:274–275

    Article  ADS  MATH  Google Scholar 

  52. Li D, Teoh WY, Selomulya C, Woodward RC, Munroe P, Amal R (2007) J Mater Chem 17:4876–4884

    Article  Google Scholar 

  53. Smolensky ED, Neary MC, Zhou Y, Berquo TS, Pierre VC (2011) Chem Commun 47:2149–2151

    Article  Google Scholar 

  54. Rao N, Girshick S, Heberlein J, McMurry P, Bench M, Jones S, Hansen D, Micheel B (1995) Plasma Chem Plasma Process 15:581–607

    Article  Google Scholar 

  55. Zachariah MR, Aquino MI, Shull RD, Steel EB (1995) Nanostruct Mater 5:383–392

    Article  Google Scholar 

  56. Janzen C, Knipping J, Rellinghaus B, Roth P (2003) J Nanopart Res 5:589–596

    Article  Google Scholar 

  57. Li D, Teoh WY, Woodward RC, Cashion JD, Selomulya C, Amal R (2009) J Phys Chem C 113:12040–12047

    Article  Google Scholar 

  58. Strobel R, Pratsinis SE (2009) Adv Powder Technol 20:190–194

    Article  Google Scholar 

  59. Guo B, Yim H, Khasanov A, Stevens J (2010) Aerosol Sci Technol 44:281–291

    Article  Google Scholar 

  60. Kumfer BM, Shinoda K, Jeyadevan B, Kennedy IM (2010) J Aerosol Sci 41:257–265

    Article  Google Scholar 

  61. Dunlop DJ (2007) J Geophys Res Solid Earth 112:B11103

    Article  ADS  Google Scholar 

  62. Verwey EJW (1939) Nature 144:327–328

    Article  ADS  Google Scholar 

  63. Ozdemir O, Dunlop DJ (2010) J Geophys Res-Solid Earth 115:B02101

    Article  Google Scholar 

  64. Maity D, Choo S-G, Yi J, Ding J, Xue JM (2009) J Magn Magn Mater 321:1256–1259

    Article  ADS  Google Scholar 

  65. Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. IEEE/Wiley, Hoboken

    Google Scholar 

  66. Guardia P, Batlle-Brugal B, Roca AG, Iglesias O, Morales MP, Serna CJ, Labarta A, Batlle X (2007) J Magn Magn Mater 316:E756–E759

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was primarily supported by the U.S. National Science Foundation under Award Numbers CBET-0730184 and CBET-1066343, and by the Minnesota Futures Grant Program. Parts of the characterization work were conducted at the College of Science and Engineering Characterization Facility and the Institute for Rock Magnetism at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Girshick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, P., Boies, A.M., Calder, S. et al. Thermal Plasma Synthesis of Superparamagnetic Iron Oxide Nanoparticles. Plasma Chem Plasma Process 32, 519–531 (2012). https://doi.org/10.1007/s11090-012-9364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9364-1

Keywords

Navigation