Skip to main content
Log in

Improving the Antibacterial Property of Polyethylene Terephthalate by Cold Plasma Treatment

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Many studies suggest strong hydrophilicity of plasma treated polyester surfaces. However, no studies have been reported on the influence of plasma on the antibacterial activity of polyethylene terephthalate. First samples were padded with triclosan as antibacterial agent with different concentrations. Second samples were treated by oxygen plasma with different operating frequency and treating time, respectively. Afterwards, plasma treated samples were padded with triclosan in same conditions. The results revealed that the antibacterial activity slighlty increased after treating with triclosan. SEM images and FTIR spectra showed that horizontal channels were brought about on the fiber surface and then better surface roughness and wettability were obtained by plasma. Fibers were fully coated with triclosan after plasma and the antibacterial activity increased with increasing operating frequency and reaction time. Finally, the samples treated with triclosan after plasma gave acceptable results and showed the best antibacterial activity for Staphylococcus aureus and Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Edward M (2002) Int Dyer 13:16

  2. Holme I (2002) Int Dyer 9:11

    Google Scholar 

  3. Kim YH, Sun G (2001) Textile Res. J. 71:318

    Google Scholar 

  4. Lindemann B (2000) Melliand 9:E205

    Google Scholar 

  5. Mao J, Murphy L (2001) Am Assoc Textile Chem Color Rev 11:28

    Google Scholar 

  6. Mao J (2001) Am Assoc Textile Chem Color Rev 12:15

    Google Scholar 

  7. Mucha H, Hofer D, Abfalg S, Swerev M (2002) Melliand Int 8:148

    Google Scholar 

  8. Nakashima T, Sakagami Y, Ito H, Matsuo M (2001) Textile Res J 78:688

    Article  Google Scholar 

  9. Service D (1998) Chem Fibers Int 48:486

    Google Scholar 

  10. Vigo T, Leonas K (1999) Textile Chem Color 1:42

    Google Scholar 

  11. Vigo TL, Donna GF, Goynes WR (1999) Textile Chem Color 31:29

    Google Scholar 

  12. Hall JR, Westerdahl CAL, Devine AT, Bodnar M (1969) J Appl Polym Sci 13:2085

    Article  Google Scholar 

  13. Kaelble DH, Dynes PJ, Cirlin EHJ (1974) J Adhes 6:23

    Article  Google Scholar 

  14. Liston EM, Martinu L, Wertheimer MR (1993) J Adhes Sci Technol 7:1091

    Article  Google Scholar 

  15. Beake B, Ling J, Leggett G (1998) J Mater Chem 8:1735

    Article  Google Scholar 

  16. Borcia G, Anderson CA, Brown NMD (2006) Surf Coat Technol 201:3074

    Article  Google Scholar 

  17. Errifai I, Jama C, Le Bras M, Delobel R, Gengembre L, Mazzah A, De Jaeger R (2004) Surf Coat Technol 180–181:297

    Article  Google Scholar 

  18. Hochart F, Jaeger R, Grutzmacher J (2003) Surf Coat Technol 165:201

    Article  Google Scholar 

  19. Jahagirdar CJ, Tiwari LB (2004) J Appl Polym Sci 94:2014

    Article  Google Scholar 

  20. Lee HR, Kim K, Lee KH (2001) Surf Coat Technol 142–144:468

    Article  Google Scholar 

  21. Liu D, Hu J, Zhao Y, Zhou X, Ning P, Wang Y (2006) J Appl Polym Sci 102:1428

    Article  Google Scholar 

  22. Oktem T, Ayhan H, Seventekin N, Piskin E (1999) J Soc Dyers Colour 115:274

    Google Scholar 

  23. Poll HU, Schladitz U, Schreiter S (2001) Surf Coat Technol 142–144:489

    Article  Google Scholar 

  24. Samanta KK, Jassal M, Agrawal AK (2009) Surf Coat Technol 203:1336

    Article  Google Scholar 

  25. Ueda M, Tokino S (1996) Rev Pro Color 26:9

    Article  Google Scholar 

  26. Vohrer U, Muller H, Oehr C (1998) Surf Coat Technol 98:1128

    Article  Google Scholar 

  27. Yip J, Chan K, Sin KM, Lau KS (2002) J Mater Process Tech 123:5

    Article  Google Scholar 

  28. Gupta B, Hilborn J, Hollenstein C, Plummer CJG, Houriet R, Xanthopoulos N (2000) J Appl Polym Sci 78:1083

    Article  Google Scholar 

  29. Donelli I, Freddi G, Nierstrasz VA, Taddei P (2010) Polym Degrad Stabil 95:1542–1550

    Article  Google Scholar 

  30. Greenwood OD, Hopkins J, Badyal JPS (1997) Macromolecules 30:1091–1098

    Article  ADS  Google Scholar 

  31. Ramos AL, Braga SS, Paz FAA (2009) Acta Cryst Sect C Acta C65:404–405

    Article  Google Scholar 

  32. Coates J (2000) Interpretation of infrared spectra, a practical approach. Wiley, New York

    Google Scholar 

  33. Roberts JD, Caserio MC (1977) Basic principles of organic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  34. Roberts JD, Webster FX (1997) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  35. Boenig HV (1982) Plasma science and technology. Cornell University, London

    Google Scholar 

  36. Grill A (1994) Cold plasma in materials fabrication: from fundamentals to application. IEEE Press, New York

    Book  Google Scholar 

  37. Kut D, Orhan M, Gunesoglu C, Ozakin C (2005) AATCC Rev 5:25

    Google Scholar 

  38. Orhan M, Kut D, Gunesoglu C (2007) Indian J Fibre Text 32:114

    Google Scholar 

  39. Orhan M, Kut D, Gunesoglu C (2009) J Appl Polym Sci 111:1344

    Article  Google Scholar 

  40. Heath RJ, Yu YT, Shapiro MA, Olson E, Rock CO (1998) J Biol Chem 273:30316–30320

    Article  Google Scholar 

  41. Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) J Biol Chem 274:11110–11114

    Article  Google Scholar 

  42. Jones RD, Jampani HB, Newman JL, Lee AS (2000) Am J Infect Control 28:184–196

    Article  Google Scholar 

  43. Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, Rice DW, Rafferty JB (1999) Nature 398:383–384

    Article  ADS  Google Scholar 

  44. McDonnell G, Russell AD (1999) Clin Microbiol Rev 12:147–179

    Google Scholar 

  45. McMurry LM, Oethinger M, Levy SB (1998) Nature 394:531–532

    Article  ADS  Google Scholar 

  46. Regos J, Hitz HR (1974) Zentralbla Bakteriol Hyg Abt 1 Orig A 226:390–401

    Google Scholar 

  47. Roujeinikova A, Levy CW, Rowsell S, Sedelnikova S, Baker PJ, Minshull CA, Mistry A, Colls JG, Camble R, Stuitje AR, Viner R, Rice DW (1999) J Mol Biol 294:527–535

    Article  Google Scholar 

  48. Stewart MJ, Parikh S, Xiao G, Tonge PJ, Kisker C (1999) J Mol Biol 290:859–865

    Article  Google Scholar 

  49. Russell AD, Chopra I (1996) Understanding antibacterial action and resistance. Ellis Horwood, Chichester

    Google Scholar 

  50. Denyer SP (1995) Int Biodeterior Biodegrad 36:227

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by The Commission of Scientific Research Projects of Uludag University, Project Number 2009/33 and by Grant TUBITAK BIDEB 2219 (The Scientific and Technological Research Council of Turkey). We also thank reviewers for helpful and stimulating suggestions and questions, which have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Orhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orhan, M., Kut, D. & Gunesoglu, C. Improving the Antibacterial Property of Polyethylene Terephthalate by Cold Plasma Treatment. Plasma Chem Plasma Process 32, 293–304 (2012). https://doi.org/10.1007/s11090-011-9342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9342-z

Keywords

Navigation