Skip to main content
Log in

High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider high order finite difference methods for two-dimensional fractional differential equations with temporal Caputo and spatial Riemann-Liouville derivatives in this paper. We propose a scheme and show that it converges with second order in time and fourth order in space. The accuracy of our proposed method can be improved by Richardson extrapolation. Approximate solution is obtained by the generalized minimal residual (GMRES) method. A preconditioner is proposed to improve the efficiency for the implementation of the GMRES method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier Science and Technology, Amsterdam (2006)

    MATH  Google Scholar 

  3. Zhang, Y.: A finite difference method for fractional partial differential equation. Appl. Math. Comput. 215, 524–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, M., Deng, W., Wu, Y.: Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Song, J., Yu, Q., Liu, F., Turner, I.: A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation. Numer. Algoritm. doi:10.1007/s11075-013-9768-x

  6. Wang, Z., Vong, S., Lei, S.L.: Finite difference schemes for two-dimensional time-space fractional differential equations. Int. J. Comput. Math. doi:10.1080/00207160.2015.1009902

  7. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  8. Anatoly, A., Alikhanov, A: new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  Google Scholar 

  10. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokker-Planck equations. Appl. Math. Lett. 43, 38–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vong, S., Wang, Z.: A high-order compact scheme for the nonlinear fractional Klein-Gordon equation (2014). doi:10.1002/num.21912

  14. Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Meth. Part. Differ. Equ. 26, 37–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun, Z.Z.: Numerical Methods of Partical Differential Equations, 2nd edn. Science Press, Bejing (2012) (in Chinese)

  16. Marchuk, G.I., Shaidurov, V.V.: Difference Methods and their Extrapolations. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  17. Lei, S., Chen, X., Zhang, X.: Multilevel circulant preconditioner for high-dimensional fractional diffusion equations, submitted

  18. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–A2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lei, S.L., Sun, H. W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Varga, R.S.: Gerṡgorin and His Circles. Springer Science & Business (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seakweng Vong.

Additional information

The first author is supported by the grant MYRG2015-00064-FST from University of Macau and Macao Science and Technology Development Fund (FDCT) 001/2013/A. The fourth author is supported by Macao Science and Technology Development Fund (FDCT) 115/2013/A3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vong, S., Lyu, P., Chen, X. et al. High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. Numer Algor 72, 195–210 (2016). https://doi.org/10.1007/s11075-015-0041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0041-3

Keywords

Mathematics Subject Classification (2010)

Navigation