Skip to main content
Log in

Implicit third derivative Runge-Kutta-Nyström method with trigonometric coefficients

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The paper presents a trigonometrically-fitted implicit third derivative Runge-Kutta-Nystöm method (TTRKNM) whose coefficients depend on the frequency and stepsize for periodic initial value problems. The TTRKNM is a pair of methods which is obtained from its continuous version and applied to produce simultaneous approximations to the solution and its first derivative at each point in the interval of interest. A discussion of the stability property of the method is given. Numerical experiments are performed to demonstrate the accuracy and efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Ambrosio, R., Ferro, M., Paternoster, B.: Two-step hybrid collocation methods for \(y^{\prime \prime }=f(x,y)\). Appl. Math. Lett. 22, 1076–1080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ananthakrishnaiah, U.: P-Stable Obrechkoff Methods with Minimal Phase-Lag for Periodic Initial Value Problems. Math. Comp. 49, 553–559 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Awoyemi, D.O.: A new sixth-order algorithm for general second order ordinary differential equation. Intern. J. Compt. Maths. 77, 117–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chawla, M.M., Sharma, S.R.: Families of Three-Stage Third Order Runge-Kutta-Nystrom Methods for \(y^{\prime \prime }= f(x, y, y^{\prime } )\). J. Aust. Math. Soc. 26, 375–386 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coleman, J.P., Duxbury, S.C.: Mixed collocation methods for \(y^{\prime \prime }=f(x,y)\). J. Comput. Appl. Math. 126, 47–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coleman, J.P., Ixaru, G.GR.: P-stability and exponential-fitting methods for \(y^{\prime \prime }=f(x,y)\). IMA J. Numer. Anal 16, 179–199 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, Y., Song, Y., Wu, X.: A robust trigonometrically fitted embedded pair for perturbed oscillators. J. Comput. Appl. Math. 225, 347–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Franco, J.M., Gomez, I.: Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs. Appl. Math. Comput. 232, 643–657 (2014)

    Article  MathSciNet  Google Scholar 

  9. Franco, J.M.: Runge-Kutta-Nyström methods adapted to the numerical intergration of perturbed oscillators. Comput. Phys. Comm. 147, 770–787 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, New York (1996)

    Book  MATH  Google Scholar 

  11. Hairer, E.: A one-step method of order 10 for \(y^{\prime \prime }=f(x,y)\). IMA J. Numer. Anal. 2, 83–94 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kalogiratou, Z.: Diagonally implicit trigonometrically fitted symplectic RungeKutta methods. Appl. Math. Comput. 219, 7406–7412 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keiper, J.B., Gear, C.W.: The analysis of generalized backwards difference formula methods applied to Hessenberg form differential-algebraic equations. SIAM J. Numer. Anal 28, 833–858 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ixaru, L.Gr., Vanden Berghe, G., De Meyer, H.: Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ixaru, L., Berghe, G.V.: Exponential Fitting. Kluwer, Dordrecht (2004)

    Book  MATH  Google Scholar 

  16. Jator, S.N.: A continuous two-step method of order 8 with a block extension for \(y^{\prime \prime } = f (x, y, y^{\prime })\). Appl. Math. Comput. 219, 781–791 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jator, S.N., Swindle, S., French, R.: Trigonometrically fitted block Numerov type method for \(y^{\prime \prime }=f(x, y, y^{\prime })\). Numer. Algorithms 62, 13–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mahmoud, S.M., Osman, M.S.: On a class of spline-collocation methods for solving second-order initial-value problems. Inter. J. Comput. Math. 86, 613–630 (2009)

    Article  MathSciNet  Google Scholar 

  19. Ngwane, F.F., Jator, S.N.: Block hybrid method using trigonometric basis for initial value problems with oscillating solutions. Numer. Algorithms 63, 713–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lambert, J.D., Watson, A.: Symmetric multistep method for periodic initial value problem. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen, H.S., Sidje, R.B., Cong, N.H.: Analysis of trigonometric implicit Runge-Kutta methods. J. Comput. Appl. Math. 198, 187–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ozawa, K.: A functionally fitted three-stage explicit singly diagonally implicit Runge-Kutta method. Japan J. Indust. Appl. Math. 22, 403–427 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Simos, T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115, 1–8 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simos, T.E.: Dissipative trigonometrically-fitted methods for second order IVPs with oscillating Solution. Int. J. Mod. Phys. 13, 1333–1345 (2002)

    Article  MathSciNet  Google Scholar 

  25. Sommeijer, B.P.: Explicit, high-order Runge-Kutta-Nyström methods for parallel computers. Appl. Numer. Math. 13, 221–240 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tsitouras, C.H.: Explicit eight order two-step methods with nine stages for integrating oscillatory problems. Int. J. Mod. Phys. 17, 861–876 (2006)

    Article  MATH  Google Scholar 

  27. Twizell, E.H., Khaliq, A.Q.M.: Multiderivative methods for periodic IVPs. SIAM J. Numer. Anal. 21, 111–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Van der Houwen, P.J., Sommeijer, B.P.: Predictor-corrector methods for periodic second-order initial value problems. IMA J. Numer. Anal. 7, 407–422 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for \(y^{\prime \prime }=f (x,y, y^{\prime })\). J. Comput. Appl. Math. 192, 114–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vanden, G., Ixaru, L.Gr., van Daele, M.: Optimal implicit exponentially-fitted Runge-Kutta. Comput. Phys. Commun. 140, 346–357 (2001)

    Article  MATH  Google Scholar 

  31. Ramos, H., Vigo-Aguiar, J.: A trigonometrically-fitted method with two frequencies, one for the solution and another one for the derivative. Comput. Phys. Commun. 185, 1230–1236 (2014)

    Article  MathSciNet  Google Scholar 

  32. Ramos, H., Vigo-Aguiar, J.: On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 23, 1378–1381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vigo-Aguiar, J., Ramos, H.: Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158, 187–211 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wua, J., Tian, H.: Functionally-fitted block methods for ordinary differential equations. J. Comput. Appl. Math. 271, 356–368 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Jator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jator, S.N. Implicit third derivative Runge-Kutta-Nyström method with trigonometric coefficients. Numer Algor 70, 133–150 (2015). https://doi.org/10.1007/s11075-014-9938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9938-5

Keywords

Mathematics Subject Classification (2010)

Navigation