Skip to main content

Advertisement

Log in

Spata2 Knockdown Exacerbates Brain Inflammation via NF-κB/P38MAPK Signaling and NLRP3 Inflammasome Activation in Cerebral Ischemia/Reperfusion Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Brain inflammation induced by ischemic stroke is an important cause of secondary brain injury. The nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and NLRP3 inflammasome signaling are believed to drive the progression of brain inflammation. Spermatogenesis-associated protein2 (SPATA2) functions as a partner protein that recruits CYLD, a negative regulator of NF-κB signaling, to signaling complexes. However, the role of SPATA2 in the central nervous system remains unclear and whether it is involved in regulating inflammatory responses remains controversial. Rats were subjected to transient middle cerebral artery occlusion followed by reperfusion (tMCAO/R) surgery. The expression and localization of SPATA2 in the brain were investigated. The lentivirus-mediated shRNA was employed to inhibit SPATA2 expression. The inflammatory responses and outcomes of Spata2 knockdown were investigated. SPATA2 was co-localized with CYLD in neurons. SPATA2 expression was reduced in tMCAO/R rats. Spata2 knockdown resulted in increased microglia, increased expression of Tnfa, Il-1β, and Il-18, decreased Garcia score, and increased infarct volume. Spata2 knockdown resulted in the activation of P38MAPK and NLRP3 inflammasome and the increased activation of NF-κB signaling. These results suggest that SPATA2 plays a protective role against brain inflammation induced by ischemia/reperfusion injury. Therefore, SPATA2 could be a potential therapeutic target for treating ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnson CO, Nguyen M, Roth GA, Nichols E, Alam T, Abate D, Abd-Allah F, Abdelalim A, Abraha HN, Abu-Rmeileh NME et al (2019) Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):439–458

    Article  Google Scholar 

  2. Johnson W, Onuma O, Owolabi M, Sachdev S (2016) Stroke: A global response is needed. Bull World Health Organ 94(9):634-634A

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heiss WD, Zaro Weber O (2017) Validation of MRI determination of the penumbra by PET measurements in ischemic stroke. J Nucl Med 58(2):187–193

    Article  PubMed  Google Scholar 

  4. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 12(6):723–725

    Article  CAS  PubMed  Google Scholar 

  5. Fu Y, Liu Q, Anrather J, Shi F-D (2015) Immune interventions in stroke. Nat Rev Neurol 11(9):524–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi K, Tian D-C, Li Z-G, Ducruet AF, Lawton MT, Shi F-D (2019) Global brain inflammation in stroke. Lancet Neurol 18(11):1058–1066

    Article  PubMed  Google Scholar 

  7. Xiong XY, Liu L, Yang QW (2016) Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol 142:23–44

    Article  CAS  PubMed  Google Scholar 

  8. Gülke E, Mathias G, Tim M (2018) Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 11:1756286418774254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhang DD, Zou MJ, Zhang YT, Fu WL, Xu T, Wang JX, Xia WR, Huang ZG, Gan XD, Zhu XM, Xu DG (2017) A novel IL-1RA-PEP fusion protein with enhanced brain penetration ameliorates cerebral ischemia-reperfusion injury by inhibition of oxidative stress and neuroinflammation. Exp Neurology 1(297):1–3

    Article  CAS  Google Scholar 

  10. Works MG, Koenig JB, Sapolsky RM (2013) Soluble TNF receptor 1-secreting ex vivo-derived dendritic cells reduce injury after stroke. J Cereb Blood Flow Metab 33(9):1376–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hosomi N, Ban CR, Naya T, Takahashi T, Kohno M (2005) Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J Cereb Blood Flow Metab 25(8):959–967

    Article  CAS  PubMed  Google Scholar 

  12. Touzani O, Boutin H, Lefeuvre R, Parker L, Rothwell N (2002) Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 Type I receptor. J Neurosci 22(1):38–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eldahshan W, Fagan SC, Ergul A (2019) Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacol Res 147:104349

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171

    Article  PubMed  CAS  Google Scholar 

  15. Neher JJ, Emmrich JV, Fricker M, Mander PK, Thery C, Brown GC (2013) Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc Natl Acad Sci USA 110(43):E4098–E4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harari OA, Liao JK (2010) NF-κB and innate immunity in ischemic stroke. Ann NY Acad Sci 1207(1):32–40

    Article  CAS  PubMed  Google Scholar 

  17. Ridder DA, Schwaninger M (2009) NF-kappaB signaling in cerebral ischemia. Neuroscience 158(3):995–1006

    Article  CAS  PubMed  Google Scholar 

  18. Sun J, Nan G (2016) The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci 59(1):90–98

    Article  CAS  PubMed  Google Scholar 

  19. Arthur JSC, Ley SC (2013) Mitogen-activated protein kinases in Inflammasomenate immunity. Nat Rev Immunol 13(9):679–692

    Article  CAS  PubMed  Google Scholar 

  20. Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE (2019) NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. Int J Stroke 14(6):574–591

    Article  PubMed  Google Scholar 

  21. Fann DY, Lim YA, Cheng YL, Lok KZ, Chunduri P, Baik SH, Drummond GR, Dheen ST, Sobey CG, Jo DG, Chen CL, Arumugam TV (2018) Evidence that NF-kappaB and Mapk signaling promotes NLRP activation in neurons following ischemic stroke. Mol Neurobiol 55(2):1082–1096

    Article  CAS  PubMed  Google Scholar 

  22. Elliott PR, Leske D, Hrdinka M, Bagola K, Fiil BK, McLaughlin SH, Wagstaff J, Volkmar N, Christianson JC, Kessler BM, Freund SM, Komander D, Gyrd-Hansen M (2016) SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol Cell 63(6):990–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T (2015) CYLD-mediated signaling and diseases. Curr Drug Targets 16(4):284–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Courtois G (2008) Tumor suppressor CYLD: negative regulation of NF-κB signaling and more. Cell Mol Life Sci 65(7–8):1123

    Article  CAS  PubMed  Google Scholar 

  25. Jiang J, Luo Y, Qin W, Ma H, Li Q, Zhan J, Zhang Y (2017) Electroacupuncture suppresses the NF-kappaB signaling pathway by upregulating cylindromatosis to alleviate inflammatory injury in cerebral ischemia/reperfusion rats. Front Mol Neurosci 10:363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhao J, Zhao J, Xu G, Wang Z, Gao J, Cui S, Liu J (2017) Deletion of Spata2 by CRISPR/Cas9n causes increased inhibin alpha expression and attenuated fertility in male mice. Biol Reprod 97(3):497–513

    Article  PubMed  Google Scholar 

  27. Claudio Maran ET, Masola V, Onisto M (2009) The story of SPATA2 (spermatogenesis-associated Protein 2): from sertoli cells to pancreatic beta-cells. Curr Genom 10(5):361–363

    Article  Google Scholar 

  28. Onisto M, Slongo LM, Graziotto R, Zotti L, Negro A, Merico M, Moro E, Foresta C (2001) Evidence for FSH-dependent upregulation of SPATA2 (spermatogenesis-associated protein 2). Biochem Biophys Res Commun 283(1):86–92

    Article  CAS  PubMed  Google Scholar 

  29. Wagner SA, Satpathy S, Beli P, Choudhary C (2016) SPATA2 links CYLD to the TNF-alpha receptor signaling complex and modulates the receptor signaling outcomes. EMBO J 35(17):1868–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schlicher L, Wissler M, Preiss F, Brauns-Schubert P, Jakob C, Dumit V, Borner C, Dengjel J, Maurer U (2016) SPATA2 promotes CYLD activity and regulates TNF-induced NF-kappaB signaling and cell death. EMBO Rep 17(10):1485–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kupka S, De Miguel D, Draber P, Martino L, Surinova S, Rittinger K, Walczak H (2016) SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Rep 16(9):2271–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang XD, Li W, Zhang S, Wu D, Jiang X, Tan R, Niu X, Wang Q, Wu X, Liu Z, Chen LF, Qin J, Su B (2020) PLK4 deubiquitination by Spata2-CYLD suppresses NEK7-mediated NLRP3 inflammasome activation at the centrosome. EMBO J 39(2):e102201

    Article  CAS  PubMed  Google Scholar 

  33. Wei R, Xu LW, Liu J, Li Y, Zhang P, Shan B, Lu X, Qian L, Wu Z, Dong K, Zhu H, Pan L, Yuan J, Pan H (2017) SPATA2 regulates the activation of RIPK1 by modulating linear ubiquitination. Genes Dev 31(11):1162–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qin WY, Luo Y, Chen L, Tao T, Li Y, Cai YL, Li YH (2013) Electroacupuncture could regulate the NF-κB signaling pathway to ameliorate the inflammatory injury in focal cerebral ischemia/reperfusion model rats. Evid Based Complement Altern Med. https://doi.org/10.1155/2013/924541

    Article  Google Scholar 

  35. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84

    Article  CAS  PubMed  Google Scholar 

  36. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation. Stroke 26(4):627–635

    Article  CAS  PubMed  Google Scholar 

  37. Zhou X, Lu W, Wang Y, Li J, Luo Y (2020) A20-binding inhibitor of NF-kappaB 1 ameliorates neuroinflammation and mediates antineuroinflammatory effect of electroacupuncture in cerebral ischemia/reperfusion rats. Evid Based Complement Alternat Med 2020:6980398

    Article  PubMed  PubMed Central  Google Scholar 

  38. Onisto M, Graziotto R, Scannapieco P, Marin P, Merico M, Slongo ML, Foresta C (2000) A novel gene (PD1) with a potential role on rat spermatogenesis. J Endocrinol Invest 23(9):605–608

    Article  CAS  PubMed  Google Scholar 

  39. Moro E, Maran C, Slongo ML, Argenton F, Toppo S, Onisto M (2007) Zebrafish spata2 is expressed at early developmental stages. Int J Dev Biol 51(3):241–246

    Article  CAS  PubMed  Google Scholar 

  40. Graziotto R, Foresta C, Scannapieco P, Zeilante P, Russo A, Negro A, Salmaso R, Onisto M (1999) cDNA cloning and characterization of PD1a novel human testicular protein with different expressions in various testiculopathies. Exp Cell Res 248(2):620–626

    Article  CAS  PubMed  Google Scholar 

  41. Cantarella G (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424(6950):801–805

    Article  PubMed  CAS  Google Scholar 

  42. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424(6950):797–801

    Article  CAS  PubMed  Google Scholar 

  43. Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I (2014) Binding of OTULIN to the PUB domain of HOIP controls NF-kappaB signaling. Mol Cell 54(3):349–361

    Article  CAS  PubMed  Google Scholar 

  44. Enesa K, Zakkar M, Chaudhury H, le Luong A, Rawlinson L, Mason JC, Haskard DO, Dean JL, Evans PC (2008) NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 283(11):7036–7045

    Article  CAS  PubMed  Google Scholar 

  45. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430(7000):694–699

    Article  CAS  PubMed  Google Scholar 

  46. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424(6950):793–796

    Article  CAS  PubMed  Google Scholar 

  47. Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, Orsolits B, Molnár G, Heindl S, Schwarcz AD (2020) Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367:528–537

    Article  PubMed  CAS  Google Scholar 

  48. Szalay G, Martinecz B, Lenart N, Kornyei Z, Orsolits B, Judak L, Csaszar E, Fekete R, West BL, Katona G, Rozsa B, Denes A (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:11499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Luo P, Chu SF, Zhang Z, Xia CY, Chen NH (2019) Fractalkine/CX3CR1 is involved in the cross-talk between neuron and glia in neurological diseases. Brain Res Bull 146:12–21

    Article  CAS  PubMed  Google Scholar 

  50. Gronhoj MH, Clausen BH, Fenger CD, Lambertsen KL, Finsen B (2017) Beneficial potential of intravenously administered IL-6 in improving outcome after murine experimental stroke. Brain Behav Immun 65:296–311

    Article  PubMed  CAS  Google Scholar 

  51. Rothaug M, Becker-Pauly C, Rose-John S (2016) The role of interleukin-6 signaling in nervous tissue. Biochem Biophys Acta 1863(6):1218–1227

    Article  CAS  PubMed  Google Scholar 

  52. Tarkowski E (1995) Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke 26(8):1393–1398

    Article  CAS  PubMed  Google Scholar 

  53. Lambertsen KL, Finsen B, Clausen BH (2019) Post-stroke inflammation-target or tool for therapy? Acta Neuropathol 137(5):693–714

    Article  PubMed  Google Scholar 

  54. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gulyás B, Tóth M, Schain M, Airaksinen A, Vas Á, Kostulas K, Lindström P, Hillert J, Halldin C (2012) Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [11C] vinpocetine. J Neurol Sci 320(1–2):110–117

    Article  PubMed  CAS  Google Scholar 

  56. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665

    Article  CAS  PubMed  Google Scholar 

  57. Boraschi D, Italiani P, Weil S, Martin MU (2018) The family of the interleukin-1 receptors. Immunol Rev 281(1):197–232

    Article  CAS  PubMed  Google Scholar 

  58. Fields JK, Sebastian G, Sundberg EJ (2019) Structural basis of IL-1 family cytokine signaling. Front Immunol 10:1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fann DY, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P, Bernreuther C, Glatzel M, Cheng YL, Thundyil J, Widiapradja A, Lok KZ, Foo SL, Wang YC, Li YI, Drummond GR, Basta M, Magnus T, Jo DG, Mattson MP, Sobey CG, Arumugam TV (2013) Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis 4:e790

    Article  CAS  PubMed  Google Scholar 

  60. Wheeler RD, Boutin H, Touzani O, Luheshi GN, Takeda K, Rothwell NJ (2003) No role for interleukin-18 in acute murine stroke-induced brain injury. J Cereb Blood Flow Metab 23(5):531–535

    Article  CAS  PubMed  Google Scholar 

  61. Hao Y, Ding J, Hong R, Bai S, Wang Z, Mo C, Hu Q, Li Z, Guan Y (2019) Increased interleukin-18 level contributes to the development and severity of ischemic stroke. Aging 11(18):7457–7472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stott DJ, Paul W, Ann R, Michele R, Ian F, Naveed S, Westendorp RGJ, Wouter JJ, Cobbe SM, Lowe GDO (2009) Adipocytokines and risk of stroke in older people: a nested case-control study. Int J Epidemiol 1:253

    Article  Google Scholar 

  63. Salani PBF, Cacciari C, Picchetto L, Cao M, Bizzoni F, Rasura M (2009) Disease outcome, alexithymia and depression are differently associated with serum IL-18 levels in acute stroke. Curr Neurovasc Res 6(3):163–170

    Article  PubMed  Google Scholar 

  64. Lee JK, Kim SH, Lewis EC, Azam T, Reznikov LL, Dinarello CA (2004) Differences in signaling pathways by IL-1β and IL-18. Proc Natl Acad Sci 101(23):8815–8820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, Spilgies L, Surinova S, Taraborrelli L, Hartwig T, Rieser E, Martino L, Rittinger K, Walczak H (2015) LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep 13(10):2258–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takiuchi T, Nakagawa T, Tamiya H, Fujita H, Sasaki Y, Saeki Y, Takeda H, Sawasaki T, Buchberger A, Kimura T, Iwai K (2014) Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 19(3):254–272

    Article  CAS  PubMed  Google Scholar 

  67. Elliott PR, Nielsen SV, Marco-Casanova P, Fiil BK, Keusekotten K, Mailand N, Freund SM, Gyrd-Hansen M, Komander D (2014) Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell 54(3):335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lork M, Verhelst K, Beyaert R (2017) CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ 24(7):1172–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liao Z, Zhang X, Song C, Lin W, Cheng Y, Xie Z, Chen S, Nie Y, Li A, Zhang H, Li H, Li H, Xie Q (2020) ALV-J inhibits autophagy through the GADD45beta/MEKK4/P38MAPK signaling pathway and mediates apoptosis following autophagy. Cell Death Dis 11(8):684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegeman G (2003) Transcriptional activation of the NF-κB p65 subunit by mitogen-and stress-activated protein kinase-1 (MSK1). EMBO J 22(6):1313–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Papa S, Zazzeroni F, Bubici C, Jayawardena S, Alvarez K, Matsuda S, Nguyen DU, Pham CG, Nelsbach AH, Melis T, Smaele ED, Tang W-J, D’Adamio L, Franzoso G (2004) Gadd45β mediates the NF-κB suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol 6(2):146–153

    Article  CAS  PubMed  Google Scholar 

  72. Smaele ED, Zazzeroni F, Papa S, Nguyen DU, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414(6861):308–313

    Article  PubMed  Google Scholar 

  73. Silvia A, Claudia M, Cristina B, Manuel SA, Giovanna R (2014) Interleukin 18 activates MAPKs and STAT3 but not NF-κB in hippocampal HT-22 cells. Brain Behav Immun 40:85–94

    Article  PubMed Central  CAS  Google Scholar 

  74. Wyman TH, Dinarello CA, Banerjee A, Gamboni-Robertson F, Silliman CC (2002) Physiological levels of interleukin-18 stimulate multiple neutrophil functions through p38 MAP kinase activation. J Leukoc Biol 72(2):401–409

    Article  CAS  PubMed  Google Scholar 

  75. Kalina U, Kauschat D, Koyama N, Nuernberger H, Ballas K, Koschmieder S, Bug G, Hofmann WK, Hoelzer D, Ottmann OG (2000) IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-γ production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol 165(3):1307–1313

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 30470606) and the Natural Science Foundation of Chongqing, Grand No. cstc2019jcyj-msxmX0630, to JJ.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YR and JJ; methodology, YR, JJ, and WJ; software, XZ and WL; validation, YR, JJ, and JW; investigation, YR, JJ, and XZ; data curation, YR, JJ, and WJ; writing—original draft preparation, YR; writing—review and editing, JJ; supervision, YL; project administration, YL; funding acquisition, YL All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yong Luo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The study was conducted according to the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and approved by the Ethics Committee for Animal Experimentation of Chongqing Medical University (number SCXK (Yu) 2018–0003). All efforts were made to minimize the number of rats sacrificed and their suffering.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2950 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Jiang, J., Jiang, W. et al. Spata2 Knockdown Exacerbates Brain Inflammation via NF-κB/P38MAPK Signaling and NLRP3 Inflammasome Activation in Cerebral Ischemia/Reperfusion Rats. Neurochem Res 46, 2262–2275 (2021). https://doi.org/10.1007/s11064-021-03360-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03360-8

Keywords

Navigation