Skip to main content

Advertisement

Log in

Do Evolutionary Changes in Astrocytes Contribute to the Computational Power of the Hominid Brain?

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is now well accepted that astrocytes are essential in all major nervous system functions of the rodent brain, including neurotransmission, energy metabolism, modulation of blood flow, ion and water homeostasis, and, indeed, higher cognitive functions, although the contribution of astrocytes in cognition is still in early stages of study. Here we review the most current research findings on human astrocytes, including their structure, molecular characterization, and functional properties. We also highlight novel tools that have been established for translational approaches to the comparative study of astrocytes from humans and experimental animals. Understanding the differences in astrocytes is essential to elucidate the contribution of astrocytes to normal physiology, cognitive processing and diverse pathologies of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reproduced from [57]

Fig. 2

Reproduced from [15]

Fig. 3
Fig. 4

Adapted from [55]

Similar content being viewed by others

References

  1. Oikonomou G, Shaham S (2011) The glia of Caenorhabditis elegans. Glia 59(9):1253–1263

    Article  PubMed  Google Scholar 

  2. Bass NH, Hess HH, Pope A, Thalheimer C (1971) Quantitative cytoarchitectonic distribution of neurons, glia, and DNa in rat cerebral cortex. J Comp Neurol 143(4):481–490

    Article  CAS  PubMed  Google Scholar 

  3. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29(11):1754–1762

    Article  CAS  PubMed  Google Scholar 

  4. Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541

    Article  PubMed  Google Scholar 

  5. Hawkins A, Olszewski J (1957) Glia/nerve cell index for cortex of the whale. Science 126(3263):76–77

    Article  CAS  PubMed  Google Scholar 

  6. Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62(9):1377–1391

    Article  PubMed  Google Scholar 

  7. Peters A, Josephson K, Vincent SL (1991) Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex. Anat Rec 229(3):384–398

    Article  CAS  PubMed  Google Scholar 

  8. Sun W, Cornwell A, Li J, Peng S, Osorio MJ, Su Wanga NA, et al (2017) SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J Neurosci 37(17):4493–4507

    Article  CAS  PubMed  Google Scholar 

  9. Golgi C (1871) Contribuzione alla fina Anatomia degli organi centrali del sistema nervosos. Rivista clinica di Bologna, Bologna

    Google Scholar 

  10. Lenhossek M (1893) Der feinere Bau des Nervensystems im Lichte neuester Forschung. Fischer’s Medicinische Buchhandlung, Berlin

    Google Scholar 

  11. Andriezen WL (1893) The neuroglia elements in the human brain. Br Med J 2(1700):227–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cajal R (1897) Histology of the nervous system of man and vertebrates. Oxford University Press, Oxford

    Google Scholar 

  13. Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31(12):653–659

    Article  CAS  PubMed  Google Scholar 

  14. Colombo JA, Gayol S, Yañez A, Marco P (1997) Immunocytochemical and electron microscope observations on astroglial interlaminar processes in the primate neocortex. J Neurosci Res 48(4):352–357

    Article  CAS  PubMed  Google Scholar 

  15. Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Colombo JA, Reisin HD (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006(1):126–131

    Article  CAS  PubMed  Google Scholar 

  17. Colombo JA, Quinn B, Puissant V (2002) Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res Bull 58(2):235–242

    Article  CAS  PubMed  Google Scholar 

  18. Colombo JA, Reisin HD, Jones M, Bentham C (2005) Development of interlaminar astroglial processes in the cerebral cortex of control and Down’s syndrome human cases. Exp Neurol 193(1):207–217

    Article  PubMed  Google Scholar 

  19. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29(10):547–553

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53

    Article  CAS  PubMed  Google Scholar 

  21. Zalk R, Clarke OB, des Georges A, Grassucci RA, Reiken S, Mancia F et al (2015) Structure of a mammalian ryanodine receptor. Nature 517(7532):44–49

    Article  CAS  PubMed  Google Scholar 

  22. Ammendola A, Geiselhöringer A, Hofmann F, Schlossmann J (2001) Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta. J Biol Chem 276(26):24153–24159

    Article  CAS  PubMed  Google Scholar 

  23. Fritsch RM, Saur D, Kurjak M, Oesterle D, Schlossmann J, Geiselhöringer A et al (2004) InsP3R-associated cGMP kinase substrate (IRAG) is essential for nitric oxide-induced inhibition of calcium signaling in human colonic smooth muscle. J Biol Chem 279(13):12551–12559

    Article  CAS  PubMed  Google Scholar 

  24. Yamaguchi M (2012) Role of regucalcin in brain calcium signaling: involvement in aging. Integr Biol 4(8):825–837

    Article  CAS  Google Scholar 

  25. Kim SY, Park SM, Lee S-T (2006) Apolipoprotein C-II is a novel substrate for matrix metalloproteinases. Biochem Biophys Res Commun 339(1):47–54

    Article  CAS  PubMed  Google Scholar 

  26. Omichi K, Hase S (1993) Identification of the characteristic amino-acid sequence for human alpha-amylase encoded by the AMY2B gene. Biochim Biophys Acta 1203(2):224–229

    Article  CAS  PubMed  Google Scholar 

  27. Goh DLM, Patel A, Thomas GH, Salomons GS, Schor DS, Jakobs C et al (2002) Characterization of the human gene encoding alpha-aminoadipate aminotransferase (AADAT). Mol Genet Metab 76(3):172–180

    Article  CAS  PubMed  Google Scholar 

  28. Sheftel AD, Stehling O, Pierik AJ, Netz DJA, Kerscher S, Elsässer H-P et al (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29(22):6059–6073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Picker S, Pieper CF, Goldring S (1981) Glial membrane potentials and their relationship to [K+]o in man and guinea pig: a comparative study of intracellularly marked normal, reactive, and neoplastic glia. J Neurosurg 55(3):347–363

    Article  CAS  PubMed  Google Scholar 

  30. Bordey A, Sontheimer H (1998) Electrophysiological properties of human astrocytic tumor cells in situ: enigma of spiking glial cells. J Neurophysiol 79(5):2782–2793

    CAS  PubMed  Google Scholar 

  31. Hinterkeuser S, Schröder W, Hager G, Seifert G, Blümcke I, Elger CE et al (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12(6):2087–2096

    Article  CAS  PubMed  Google Scholar 

  32. Vasile F, Dossi E, Rouach N (2017) Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct 222:2017–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bennett MVL, Contreras JE, Bukauskas FF, Sáez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26(11):610–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee SH, Magge S, Spencer DD, Sontheimer H, Cornell-Bell AH (1995) Human epileptic astrocytes exhibit increased gap junction coupling. Glia 15(2):195–202

    Article  CAS  PubMed  Google Scholar 

  35. Aronica E, Gorter JA, Jansen GH, Leenstra S, Yankaya B, Troost D (2001) Expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. Acta Neuropathol 101(5):449–459

    CAS  PubMed  Google Scholar 

  36. Fonseca CG, Green CR, Nicholson LFB (2002) Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. Brain Res. 929(1):105–116.

    Article  CAS  PubMed  Google Scholar 

  37. Pu P, Xia Z, Yu S, Huang Q (2004) Altered expression of Cx43 in astrocytic tumors. Clin Neurol Neurosurg 107(1):49–54

    Article  PubMed  Google Scholar 

  38. Caltabiano R, Torrisi A, Condorelli D, Albanese V, Lanzafame S (2010) High levels of connexin 43 mRNA in high grade astrocytomas. Study of 32 cases with in situ hybridization. Acta Histochem 112(6):529–535

    Article  CAS  PubMed  Google Scholar 

  39. Bedner P, Dupper A, Hüttmann K, Müller J, Herde MK, Dublin P et al (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain J Neurol 138(Pt 5):1208–1222

    Article  Google Scholar 

  40. Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol 814:3–7

    Article  CAS  PubMed  Google Scholar 

  41. Banner SJ, Fray AE, Ince PG, Steward M, Cookson MR, Shaw PJ (2002) The expression of the glutamate re-uptake transporter excitatory amino acid transporter 1 (EAAT1) in the normal human CNS and in motor neurone disease: an immunohistochemical study. Neuroscience 109(1):27–44

    Article  CAS  PubMed  Google Scholar 

  42. Nissen JD, Lykke K, Bryk J, Stridh MH, Zaganas I, Skytt DM et al (2017) Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes. Glia 65(3):474–488

    Article  PubMed  Google Scholar 

  43. Navarrete M, Perea G, Maglio L, Pastor J, García de Sola R, Araque A (1991) Astrocyte calcium signal and gliotransmission in human brain tissue. Cereb Cortex 23(5):1240–1246

    Article  Google Scholar 

  44. Fu W, Ruangkittisakul A, MacTavish D, Baker GB, Ballanyi K, Jhamandas JH (2013) Activity and metabolism-related Ca2+ and mitochondrial dynamics in co-cultured human fetal cortical neurons and astrocytes. Neuroscience 250:520–535

    Article  CAS  PubMed  Google Scholar 

  45. Sun W, McConnell E, Pare J-F, Xu Q, Chen M, Peng W et al (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339(6116):197–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grosche A, Reichenbach A (2013) Developmental refining of neuroglial signaling? Science 339(6116):152–153

    Article  CAS  PubMed  Google Scholar 

  47. Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L et al (2013) α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54(6):387–394

    Article  CAS  PubMed  Google Scholar 

  48. Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE (2014) Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82(6):1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H, Zeng H et al (2015) Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo. Nat Neurosci 18(5):708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19(2):182–189

    Article  CAS  PubMed  Google Scholar 

  51. Kanemaru K, Sekiya H, Xu M, Satoh K, Kitajima N, Yoshida K et al (2014) In vivo visualization of subtle, transient, and local activity of astrocytes using an ultrasensitive Ca(2+) indicator. Cell Rep 8(1):311–318

    Article  CAS  PubMed  Google Scholar 

  52. Shigetomi E, Bushong EA, Haustein MD, Tong X, Jackson-Weaver O, Kracun S et al (2013) Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J Gen Physiol 141(5):633–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goldman SA, Nedergaard M, Windrem MS (2012) Glial progenitor cell-based treatment and modeling of neurological disease. Science 338(6106):491–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Windrem MS, Schanz SJ, Guo M, Tian G-F, Washco V, Stanwood N et al (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6):553–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S et al (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12(3):342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Barres BA (2013) A smarter mouse with human astrocytes. BioEssays 35(10):876–880

    PubMed  Google Scholar 

  57. García-Marín V, García-López P, Freire M (2007) Cajal’s contributions to glia research. Trends Neurosci 30(9):479–487

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Ann Oberheim Bush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberheim Bush, N.A., Nedergaard, M. Do Evolutionary Changes in Astrocytes Contribute to the Computational Power of the Hominid Brain?. Neurochem Res 42, 2577–2587 (2017). https://doi.org/10.1007/s11064-017-2363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2363-0

Keywords

Navigation