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Introduction

Sirtuins (SIRT1–SIRT7) belong to the family of histone 
deacetylases. These enzymes modulate the properties and 
functions of proteins (e.g. histones, kinases, and transcrip-
tion factors-TFs) [1, 2] by removing acetyl groups post-
translationally attached to their lysine residues by acetyl-
transferases. Sirtuins are class III HDACs and differ from 
other classes in that they require NAD+ for their activity. 
This feature couples sirtuin activity to the cellular meta-
bolic status [3], in turn allowing these enzymes to modulate 
the crucial proteins of the electron transport chain (ETC), 
stress response, and life/death signaling. Some sirtuins also 
possess additional enzymatic activities such as mono(ADP-
ribosyl)ation (SIRT3, SIRT4, SIRT6), the ability to remove 
a wide array of other lysine modifications (e.g. desucci-
nylation and demalonylation—SIRT5; decrotonylation—
SIRT1–3), and/or lack detectable deacetylation capability 
(SIRT4) [1, 2]. Sirtuins are engaged in cross-talk with a 
wide spectrum of transcription factors, including forkhead 
box subgroup O (FOXOs), p53, and NF-κB, and with pro-
teins engaged in DNA repair such as DNA-dependent pro-
tein kinase (DNA-PK) [1, 4]. The versatile and ubiquitous 
family of poly(ADP-ribose) polymerases (PARPs) shares 
the feature of NAD+-dependence with sirtuins; the two 
classes of enzymes compete for the substrate and interact in 
numerous ways, influencing a very broad range of cellular 
functions [1, 4]. Sirtuins display complex cellular locali-
zation in the cytoplasm, nucleus, and mitochondria [2]. 
All sirtuins are present in the brain in a highly regulated, 
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spatiotemporal pattern and may influence the course of 
aging and pathological changes [4, 5].

Sirtuins and Their Roles in Mitochondria: 
Biogenesis, Energy Production, and Survival/
Death Signaling

The presence of sirtuins (SIRT3, 4, 5) in mitochondria 
appears to undergo precise regulation. The exact localiza-
tion of SIRT3 seems to be species-specific; human SIRT3 
is a mitochondrial matrix protein, but its mouse ortholog 
resides in the inner membrane [6, 7]. SIRT4 and SIRT-5 
are also present in the mitochondrial matrix. Human SIRT5 
has an additional membrane insertion sequence; its mito-
chondrial presence depends on the isoform [8]. Mitochon-
drial localization of sirtuins is mutually interdependent. 
It is proposed that SIRT3 is present in mitochondria only 
when the expression of SIRT5 is low [9]. This scattered 
evidence suggests the possibility of a complex network of 
regulation for the level and localization of various sirtuins. 
The results published thus far point to the involvement of 
sirtuins in the regulation of mitochondrial turnover, fusion 
and fission, and of mitochondrial cell death signaling. Sir-
tuins also influence mitochondrial respiratory machinery 
and ROS production in multiple tissues (Fig.  1). Impor-
tantly, the significance of mitochondrial regulation for CNS 
homeostasis extends well beyond brain neurons, as they are 
extremely sensitive to the effects of metabolic deregulation 
in the periphery (with the arginine/urea metabolism being 
an example of a sirtuin-dependent pathway strongly linked 
to neurodegenerative conditions). SIRT3 can also enhance 
via FOXO3 the expression of antioxidant enzymes includ-
ing the mitochondrial manganese superoxide dismutase 
(Mn-SOD), peroxiredoxins, or thioredoxin 2 [10, 11].

SIRT1, mainly a nuclear enzyme, can be also present 
in mitochondria [12]. Moreover, it has been shown to be 
engaged in mitochondrial biogenesis [13–15]; reviewed 
in [12, 16]. Exercise training increases SIRT1 mRNA 
level and the amount of mtDNA indicating intensified 
mitogenesis in most brain regions, with potential cogni-
tive significance [15]. SIRT1 seems to exert this beneficial 
influence via peroxisome proliferator-activated receptor γ 
co-activator-1α (PGC-1α) [17]. PGC-1α is a crucial regula-
tor of mitochondrial biogenesis and energy metabolism [18, 
19]. PGC-1α is also engaged in antioxidant defense, for 
example via regulation of Mn-SOD and glutathione peroxi-
dase [20]. Impaired PGC-1α function may contribute to the 
pathogenesis of neurodegenerative diseases such as Alzhei-
mer’s and Parkinson’s (AD and PD, respectively), Hunting-
ton’s disease, or ischemic damage [21–24]. SIRT3 is also 
involved in the regulation of mitochondrial biogenesis in a 
manner mediated by its target FOXO3 and Parkin. SIRT3 

activates FOXO3a and its target PTEN-induced kinase-1 
(PINK-1), a protein known to modulate the cellular redox 
status and mitochondrial function. PINK-1 in turn enhances 
Parkin activity, potentiating the fusion of mitochondria and 
mitophagy [25]. SIRT3 overexpression has led to a sig-
nificant increase in cellular mtDNA content, while shRNA 
against SIRT3 has reduced the PGC-1α-mediated rise of 
mtDNA [26].

The influence of sirtuins on the energy metabolism 
may also come from their direct interactions with the 
respiratory machinery (Fig.  1). SIRT3 regulates pyru-
vate dehydrogenase that is acetylated by the acetyl-CoA 
acetyltransferase 1 (ACAT1); acetylation/deacetylation 
status of the dehydrogenase is important for the regula-
tion of glycolysis in cancer cells [27]. Moreover, SIRT3 

Fig. 1   Mitochondrial targets of sirtuin signalling. Depending on the 
organ and cell type, sirtuins may affect multiple stages of glucose-
based energy metabolism, the production of ketone bodies, glutamate 
usage, or arginine, citrulline, and polyamine biosynthesis. While 
numerous metabolites have direct roles in the CNS, others not pro-
duced locally, may dramatically impact brain health (as in the case of 
e.g. urea cycle, which is typically incomplete in the central neurons, 
but its deregulation in peripheral tissues leads to neurodegeneration 
in the CNS). According to [40], modified
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deacetylates and stimulates isocitrate dehydrogenase 2, 
an enzyme of the tricarboxylic acid cycle [28]. Complex I 
constituent, NADH dehydrogenase 1α subcomplex subu-
nit 9 is deacetylated and activated by SIRT3 [29]. SIRT1 
has been shown to enhance the function of complex I in 
insulin-resistant cells, possibly via SIRT3. Overexpres-
sion of SIRT1 attenuated high-fat diet-induced insulin 
resistance in the skeletal muscle, and restored the levels 
of SIRT3, mitochondrial antioxidant enzymes and DNA 
[30]. The part of complex II, succinate dehydrogenase 
subunit A is also suggested as a SIRT3 substrate [31]. 
Thus, sirtuins appear to influence several stages of energy 
metabolism. SIRT4 generally falls in the same scenario. 
Loss of its expression in several cell types (hepatocytes, 
muscle) leads to lower ATP production. SIRT4 has been 
implicated in the regulation of mitochondrial uncoupling. 
It is also involved in signaling to the nucleus via AMPK, 
PGC1α and acetyl-CoA carboxylase, which adjusts mito-
chondrial ATP production to the energetic demands of 
the cell [32]. SIRT5, too, has been found to be linked to 
AMPK, PGC1α and mitochondrial ATP generation [33].

Mitochondrial sirtuins are involved in the usage of alter-
native energy sources. The change of energetic substrates 
is accomplished in hepatocytes by SIRT3 through deacety-
lation of acyl-CoA dehydrogenases, glutamate dehydroge-
nase, and the mitochondrial acetyl-CoA synthetase [34–
36]. These activities allow sustained energy production in 
the conditions of disturbed supply of the basal substrates. 
SIRT4 has been found to shift the balance in lipid usage 
from fatty acid oxidation towards lipid anabolism, by inhib-
iting malonyl-CoA decarboxylase [37]. Mitochondrial lipid 
metabolism can be also affected by SIRT5 via its desuccin-
ylase activity directed towards liver mitochondrial proteins 
engaged in β-oxidation and ketogenesis [38]. SIRT5 might 
also influence other aspects of mitochondrial energy pro-
duction such as the tricarboxylic acid cycle [39].

Besides the ATP generation, SIRT5 regulates the detoxi-
cation of ammonia. Through deacetylation, SIRT5 acti-
vates the carbamoyl phosphate synthase 1, intensifying the 
conversion of ammonia into carbamyl phosphate and then 
citrulline, which is metabolized in the urea cycle (Fig.  1; 
[40]).

Sirtuins exert their influence on the antioxidative 
defenses in mitochondria. While PGC-1α is induced by 
SIRT1 in rat hippocampus [41], Kong et  al. [26] have 
shown that SIRT3 is an important mediator of the PGC-1α-
dependent induction of SOD2 and glutathione peroxidase-1 
(in skeletal muscle cells). A number of articles confirmed 
the role of SIRT3 in the positive regulation of the level and 
activity of MnSOD in various tissues [42–44]. SIRT3 also 
plays a role in the mitochondrial unfolded protein response, 
which is activated to cope with oxidatively damaged pro-
teins [45].

Sirtuins have been shown to be involved in the regula-
tion of mitochondrial membrane permeability. In cardiac 
muscle, SIRT3 deacetylates mitochondrial protein cyclo-
philin D, which is a regulatory component of the perme-
ability transition pore (mPTP) [46]. SIRT5 deacetylates 
cytochrome c in vitro [47]. However, the outcome of these 
phenomena is unclear.

Sirtuins in Aging

The emerging involvement of sirtuins and their targets in 
the longevity effects of caloric restriction (CR) may be 
an excellent recapitulation of their roles in the organism’s 
struggle to control and counter stress and macromolecular 
damage [48]. Sirtuins are bi-directionally linked to the sign-
aling pathways of insulin and insulin-like growth factor-I 
(IGF-I), collectively termed IIS (insulin/IGF signaling). 
IGF-I increases SIRT1 expression via JNK1 (c-Jun N-ter-
minal kinase 1 [49]). In turn, SIRT1 and SIRT2 restore the 
activity of the IGF/insulin receptor target Akt, and SIRT1 
supports the IIS signal by deacetylation of insulin recep-
tor substrate 2 (IRS-2). However, SIRT1 and SIRT6 could 
also suppress the expression of IGF, its receptor, and IIS-
dependent genes in some circumstances [49]. IIS plays 
highly regulated, important roles in the CNS. IGF-I syn-
thesis declines in old organisms, weakening IGF’s trophic 
action and most probably causing a significant proportion 
of observed age-related disturbances in brain function 
[50–52].

Despite the generally trophic role of IGF-I the IIS path-
way turns out to be a crucial element of longevity-inhib-
iting signaling [53]. In invertebrate models of aging, IIS-
dependent suppression of FOXO ortholog (DAF-16) is 
relieved in conditions of stress such as oxidative damage, 
starvation, or CR. This de-repression leads to the activation 
of DAF-16/FOXO-responsive genes, enhancing the resist-
ance to broad range of stress conditions [54–57].

Data obtained in vertebrates also suggest the involve-
ment of IIS in the modulation of stress resistance and, pos-
sibly, longevity [53, 58–60]. The effect was dependent on 
neuronal action of IIS [61, 62]. However, the matter is still 
not fully settled suggesting that the much higher complex-
ity and redundancy of IIS in mammals requires far more in-
depth analysis [63, 64].Significant side-effects of reduced 
IIS also complicate the matters [65–67].

Sirtuins appear to be involved in the longevity-modulat-
ing role of IIS; the impact of SIRT1 on long-term survival 
occurs again through signaling events in specific regions of 
the CNS [68]. SIRT1 also appears to be involved in the role 
of IIS in the CR, but sirtuins might also affect the calorie 
intake itself—again, through the influence on FOXO [54, 
69]. A drop in hippocampal SIRT1 level or activity (Fig. 2) 
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has been noted in the aged rat brain, although the results 
are inconsistent with some works showing reduced activity 
despite elevated protein [70, 71].

The expression of SIRT3-SIRT7 undergoes changes in 
the aging brain in a region-specific manner (Fig.  2; [71, 
72]). Single-nucleotide polymorphisms in SIRT3, SIRT5 
and SIRT6 genes have been noted to correlate with human 
lifespan [73].

The potential role for SIRT2 in aging is suggested by the 
association found between human longevity and a polymor-
phism in the probable regulatory elements of its gene [74]. 
Isoform-/region-specific increase of brain SIRT2 content 
has been observed during aging in mice and rats [71, 75]. 
Deacetylation by SIRT2 of the life-span modulating cell 
cycle checkpoint kinase BubR1 has been shown to preserve 
its cellular levels while loss of BubR1 is observed in aging 
muscle due to NAD+ decline [76, 77]. This makes SIRT2 a 
good candidate for another longevity modulator although it 
does not seem to be the sole BubR1 regulating factor [78].

SIRT3 single nucleotide polymorphism also seems to 
associate with human longevity [79, 80], although the 
data still needs further elaboration [81]. SIRT3 reacts to 
nutritional status and has been shown to mediate some of 
the beneficial effects of CR, including many of the CR-
induced transcriptional changes in numerous tissues [28, 
82, 83]. SIRT3 is increasingly viewed as a modulator of 
metabolic adaptation to caloric restriction, making it a 
promising target [84]. Its protein expression changes in a 
number of mouse peripheral organs during aging, includ-
ing mouse hematopoietic stem cells where its decrease lim-
its their regenerative potential [85, 86]. Intense oxidative 
stress reduces SIRT3 in human mesenchymal stromal/stem 
cells, which renders them more vulnerable as SIRT3 sup-
ports the activity of the catalase-SOD ensemble [87, 88]. 

Disturbances in the SIRT3 role as an important free radi-
cal defense supporter also appear to contribute to aging of 
the central auditory system [89]. Moreover, the repertoire 
of SIRT3 interacting partners suggest further aspects of 
its role in longevity. Deacetylation by SIRT3 supports the 
stability and activity of 8-oxoguanine-DNA glycosylase-1 
(OGG1), a base excision DNA repair enzyme. This protects 
mtDNA against accumulation of the mutagenic damage 
product 8-oxoguanine [90]. SIRT3 also deacetylates DNA 
repair regulator Ku70 [91]. In addition, SIRT3 binds the 
heat shock protein HSP70 and causes its increased nuclear 
presence [92]. These interactions are potentially linked to 
the mechanisms of age-related neurodegeneration.

Corresponding with SIRT6 role in glucose metabolism 
and IGF-I homeostasis, results have been obtained sug-
gesting its involvement in CR [93, 94]. Animal models 
provide somewhat conflicting results on SIRT6 levels dur-
ing aging [95–97]; some of the age dependency may be 
explained by the regulatory loop that links SIRT6 with the 
age-modulated microRNA miR-766 [98]. The potential 
engagement of SIRT6 disturbances in the aging process 
is otherwise among the best documented. Suppression of 
SIRT6 protein levels mediates premature senescence-like 
phenotype in cells under H2O2-induced oxidative stress 
[99]. Premature cell senescence in Hutchinson–Gilford 
progeria syndrome (HGPS) and chronic obstructive pul-
monary disease is linked with lower SIRT6 expression; its 
restoration remedies a number of senescence-linked traits, 
in the latter case through modulation of IIS–mTor signal-
ing [100, 101]. The restoration of falling SIRT6 levels 
also rescues the diminished efficiency of DNA base exci-
sion repair in human foreskin fibroblasts from aged donors 
[102]. Likewise, in the aged brain diminished SIRT6 bind-
ing could lead to genomic instability [103]. In turn, some 
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peripheral tissues display an age-related rise of SIRT6; its 
inhibition by physical exercise improved oxidative damage 
resistance in muscle [96]. SIRT6−/− mice develop (possi-
bly IGF-I-linked) progeroid-like phenotype, while SIRT6 
overexpression supports male longevity in mice which 
is accompanied by a reduction in serum IGF-I, dramatic 
increase in the expression of IGF-binding protein-1 mRNA, 
and changed phosphorylation levels of Akt and FOXO1 
[104, 105]. Moreover, SIRT6 binds c-Jun and inhibits its 
IGF-dependent transcriptional activity [106]. Analysis of 
SIRT6 interactions (PARP-1, DNA-PK catalytic subunit, 
other DNA repair proteins, histones) also supports its role 
in aging, probably through the regulation of chromatin 
assembly state to facilitate DNA repair in a way somewhat 
reminiscent of the role of its partner PARP-1 [107]. SIRT6 
localizes early to double-strand DNA breaks and is needed 
for their efficient removal via both pathways: homologous 
recombination (HR) and non-homologous end-joining 
(NHEJ) [108, 109]. The mentioned drop in SIRT6 expres-
sion during cellular senescence is accompanied by HR 
deficiency and SIRT6 overexpression largely rescued this 
phenotype [110]. Cells deficient in SIRT6 enzymatic activ-
ity display defects in base excision DNA repair, increased 
sensitivity to ionizing radiation (but not UV) and multi-
ple chromosomal aberrations though the results clearly 
need further elucidation [104]. The links between SIRT6, 
DNA repair, and aging also extend to telomere mainte-
nance. SIRT6 localizes to telomeric chromatin and facili-
tates the binding of Werner syndrome (WS) protein (WRN) 
there. WRN is a DNA helicase crucial for genome stabil-
ity, mutated in the WS. SIRT6 deficiency leads to replica-
tive senescence and telomere dysfunction resembling the 
pathology seen in WS [111].

The engagement of SIRT6 in the mitigation of aging 
and oxidative stress also occurs through its interactions 
with several crucial pathways of transcriptional regula-
tion. SIRT6 has been found to support the transactivation 
of anti-oxidant genes by nuclear factor erythroid 2-related 
factor 2 (NRF-2). SIRT-6 deficiency has led to oxidative 
stress and accelerated decay of human mesenchymal stem 
cells [112]. NF-κB, another SIRT6 partner, potentially 
belongs to the crucial modulators of age-related pheno-
types [113]. The interaction of SIRT6 with NF-κB subunit 
RelA recruits SIRT6 to NF-κB target sequences and allows 
it to repress promoter activities; many of these belong to 
a group of genes that show increased expression with age 
[113, 114]. Experimental SIRT6 deficiency led to hypera-
cetylation of histones bound to NF-κB target promoters. 
This increased the activity of these promoters, augmenting 
NF-κB-dependent cellular senescence. This role of NF-κB 
has been confirmed in vivo [114]. Hypoxia-inducible fac-
tor (HIF) transcription factors are another family of SIRT6 
(and SIRT1) interaction partners. The vast significance of 

HIFs for the regulation of oxygen + glucose/lactate metabo-
lism suggests their engagement of in the course of aging. 
In invertebrates HIF-related modulation of the lifespan has 
been shown, though conflicting views exist whether the 
pathway is separate from CR- and IGF-dependent longev-
ity modulation [115, 116]. The above mentioned data and 
the shortened lifespan of SIRT6-deficient rodents (accom-
panied by disturbed glucose metabolism) [117] suggest 
that SIRT-HIF cross-talk might potentially be also engaged 
in vertebrate longevity. It is known that SIRT1 can inhibit 
HIF1 and activate HIF2, and that SIRT6 may be a co-
repressor for HIF-1α [117–119]. HIF transactivation tar-
gets include genes with known neuroprotective influence, 
although their role in neurodegeneration is still ambiguous 
[120, 121].

Sirt7 has been recently noted to support the regenerative 
potential hematopoietic stem cells via regulation of mito-
chondrial stress signaling [122]. Its numerous interactions 
with enzymes of nucleic acid metabolism strengthen the 
possible association with life-long maintenance, necessitat-
ing further research in the topic [107].

The signaling targets of sirtuin-regulated FOXOs with 
potential anti-aging significance are still rather unclear; 
candidates include thioredoxin-interacting protein (Txnip), 
which is repressed by FOXO1a [123]. Txnip1 suppresses 
the stress response, correlates negatively with longevity 
and is viewed as a SIRT1 antagonist [124, 125]. FOXOs 
also target microRNAs that might modulate stress resist-
ance and long-lived dormant invertebrate developmen-
tal states [126]. Several other TFs have been suggested as 
mediators of the pro-longevity SIRT1 action, but their sig-
nificance needs further elucidation [127].

Sirtuins in Neurodegeneration 
and Neuroprotection

Sirtuins in AD

A number of works have shown the potential role of sir-
tuins in AD (Fig. 3) and other neurodegenerative disorders. 
The reduction of SIRT1 and SIRT3 mRNA/protein levels 
observed in AD brain correlates with the stage/duration of 
the disease [128, 129], and can be mimcked in vitro by the 
influence of Aβ25-35 on SIRT1 [130]. In turn, up-regulation 
of SIRT3 mRNA that followed the spatial and temporal 
profiles of Aβ accumulation has been shown in mice, and 
higher SIRT3 mRNA was observed in the temporal cor-
tex of AD cases (Braak tangle stage III–VI, average age 
82.5 ± 2.3) [131]. SIRT5 is induced in activated microglia 
of AD brains [129]. In  vitro Aβ1-42 treatment also led to 
increased SIRT-3, -4, and -5 [132]. However, overexpres-
sion of APP and presenilin 1 has led to reduction in SIRT3 
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mRNA and protein in a mouse model, suggesting more 
complex relations [133].

It has been reported that SIRT1 shifts the balance 
between amyloidogenic and non-amyloidogenic process-
ing of APP in vitro and in transgenic mouse models [134]. 
SIRT1 up-regulates the α-secretase ADAM10, and through 
inhibition of NF-κB down-regulates the expression of the 
β-secretase β-site AβPP-cleaving enzyme 1 (BACE1) 
(Fig.  4; [135–141]). Moreover, Aβ degradation via 
autophagy may also be dependent on SIRT1 [142]. Thus, 
SIRT1 appears to reduce the levels of Aβ, oxidative stress 
and the resulting neuronal loss [139]. Activation or over-
expression of SIRT1 is also reported to interfere with Aβ 
toxicity mediated by microglia through its ability to inhibit 
NF-κB signaling [143, 144, 148]. SIRT1 might also protect 
against synapse loss, a more subtle and earlier effect of Aβ 
pathology [139]. In turn, small-molecule SIRT2 inhibitors 
3-(1-azepanylsulfonyl)-N-(3-bromphenyl) benzamide (AK-
7) and 2-cyano-3-[5-(2,5-dichlorophenyl)-2-furanyl]-N-5-
quinolinyl-2-propenamide (AGK2) have shifted the balance 
between α- and β-secretase reducing the Aβ load and led 
to cognitive improvement in two transgenic mouse models 
[145]. AGK-2 also reduced glial activation by Aβ1-42 [144]. 
Thus, SIRT1 and SIRT2 seem to influence the APP cleav-
age in approximately opposing ways.

Less data is available for other sirtuins. It has been found 
that short-term treatment with extracellular Aβ1-42 oligom-
ers enhanced the expression of SIRT4 gene but prolonged 
treatment affected all three mitochondrial isoforms (SIRT3 
to SIRT5), suggesting that links between APP/Aβ and 
SIRTs might be more complex, possibly reciprocal [132].

Intracellular accumulation of pathologically modified 
microtubule associated protein tau may be another highly 
promising target in AD research and therapy [146]. Sirtuins 

mediate the leptin-dependent inhibition of tau phospho-
rylation [147]. SIRT1also removes acetyl groups from tau, 
thus relieving the p300-mediated inhibition of phospho-tau 
degradation [148]. Manipulations of sirtuin activity could 
therefore influence tau, potentially changing the number of 
neurofibrillary tangles (NFT) [149, 150]. Moreover, SIRT1 
and tau share common upstream regulation mechanism, as 
both are targets of microRNA-132 [151] and of ademosine 
monophosphate-activated kinase (AMPK, which leads to 
the inhibition of the crucial tau kinase GSK-3β, and mod-
ulates SIRT1 signaling in a complex manner) [152–154]. 
These might contribute to the observed inverse correlation 
between abnormal tau deposition and SIRT1 mRNA and 
protein levels in AD [128].

Besides Aβ and tau, the two crucial elements of molecu-
lar AD pathology, sirtuin signaling is able to influence path-
ways engaged in neuroprotection and brain tissue renewal. 
The SIRT1/retinoic acid receptor β target ADAM10 not 
only cleaves APP but also induces Notch receptor cleavage 
[155]. The release of Notch intracellular domain activates 
the transcription of neurogenesis-related genes, and Notch 
pathway has been shown to be a necessary element of neu-
rogenesis and differentiation of the newly created cells in 
response to pathological insults [156, 157]. Moreover, 
Notch targets include genes crucial for synaptic plasticity, 
learning and memory, and generation of neurites and syn-
apses [155]. Thus, the protection offered by SIRT1 appears 
to be multi-tiered and stem both from Notch activation and 
influences on APP and tau metabolism.
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A neuroprotective role of SIRT1 has been also observed 
in prion diseases [158]. Somewhat surprisingly, numerous 
results point to detrimental roles played by SIRT2 in neu-
rodegenerative disorders, and in other pathological condi-
tions. SIRT2 is increased in AD; its knock-out or inhibition 
reduces the cytoskeletal pathology and improves autophagy 
[159]. A meta-analysis has found an association between a 
polymorphism in an intron of SIRT2 gene and AD suscep-
tibility [160].

Sirtuin partners FOXOs and the IIS have vast potential 
significance for AD and other diseases linked to disturbed 
somatic maintenance. The significance of brain IGF-I sign-
aling and its targets for neuronal survival and death is still 
poorly known and appears to be fundamentally different 
from their peripheral roles [161].

IIS has recently become a focus in the research decipher-
ing metabolic disturbances that co-occur with (and possibly 
precede) AD, raising some hopes for the search of early, 
measurable symptoms of developing pathology [162]. IIS 
can suppress Aβ production [163] and resulting tissue dam-
age [164] although its full role in AD is still unclear [165, 
166]. Deeper understanding is necessary as it may become 
an attractive target in the future treatment of AD and PD 
[167]. However, despite the discrepancies IGF-I replace-
ment therapies have been proposed and tested [161, 168].

FOXOs themselves are capable of extensively modulat-
ing protein turnover and oxidative stress, both crucial for 
Aβ/ASN accumulation and toxicity [169]. FOXOs might 
also mediate the inhibition of neuroprotective PI3K/Akt 
signaling by Aβ [170]. These TFs have been thus suggested 
as potential integrating factors in AD metabolic deregu-
lation [171]. The expression of FOXO1 is altered with 
increased AD severity [172]. FOXO3a might also mediate 
the toxic effect of Aβ-dependent inhibition of neuropro-
tective PI3K/Akt signaling [170], and the impact of age 
on FOXO3 has been suggested as a crucial step changing 
relatively benign protein aggregates into neurotoxic Aβ 
deposits [169]. FOXO3a also modulates toxic aggregation 
of ASN [173] and is found in Lewy bodies/Lewy neurites 
[174].

Sirtuins in PD

The course of PD, another neurodegenerative disorder that 
impacts the dopaminergic system also is affected by SIRT 
signaling. SIRT1 displays neuroprotective properties in 
experimental PD models [175, 176]. It was reported that 
oxyresveratrol protected dopaminergic SH-SY5Y cells 
against the toxicity of the Parkinsonian mimetic 6-hydroxy-
dopamine through countering the-down regulation of 
SIRT1. Resveratrol whose functions include activation of 
SIRT1 also offered protection in this model, as well as in 
MPTP-induced mouse Parkinsonism [177, 178]. Moreover, 

genetic variants that result in reduced SIRT1 expression co-
occurred with sporadic PD [179].

SIRT1 might exert its protective effects in PD through 
several pathways linked to general stress resistance and 
more specifically to α-synuclein (ASN) metabolism. The 
activation of PGC-1α, a protein considered a central ele-
ment of oxidative stress resistance, by SIRT1 in response 
to resveratrol may render MPTP-treated mice less prone 
to neurodegeneration [180]. The protective effect of res-
veratrol in a rotenone-induced human neuroblastoma cell 
model of PD has been largely attributed to its ability to 
induce autophagic degradation of ASN via SIRT1 [181]. 
Molecular chaperones may also be valuable targets in pro-
tein misfolding-related diseases; Hsp70 has been found to 
protect against ASN aggregation and toxicity [182, 183]. 
SIRT1 deacetylated the heat shock factor 1 (HSF1) facili-
tating prolonged binding to its target sequence in the gene 
coding for Hsp70. This led to elevated expression of Hsp70 
in stress conditions [184] raising the possibility that HSF1 
and Hsp70 might indeed mediate the protective effect of 
SIRT1 as it does for example in an amyotrophic lateral 
sclerosis model [185].

On the contrary, inhibition of SIRT2 with AK-7 reduces 
MPTP-induced loss of dopaminergic neurons in a mouse 
model [186]. SIRT2 inhibition improves neurological and 
behavioral deficits in a PD model induced by MPTP in old 
mice [187]. siRNA against SIRT2 or its inhibitor AGK2 
block the toxic effect of α-synuclein in a Parkinsonian pri-
mary midbrain culture model (mutant ASN transfection) 
and modifies the pattern of α-synuclein inclusions in cells 
transfected with ASN and its interaction partner synphilin 1 
[188]. SIRT2 inhibition improves neurological and behav-
ioral deficits in a PD model induced by MPTP in old mice 
[187].

SIRT2 inhibition also blocked the apoptosis of an oli-
godendroglial cell line in a model of another ASN-linked 
disorder, multiple system atrophy [189]. Results in cer-
ebral ischemia are less clear [186, 190]. However, SIRT2 
has also been shown to contribute to the pathology of the 
vascular system and to the effects of oxidative stress in the 
endothelium, which have immediate impact on brain oxy-
gen supply [191, 192].

Sirtuins in HD

Huntington’s disease (HD) is an autosomal trinucleotide 
repeat disorder characterized by striatal and cortical neu-
rodegeneration leading to motor and cognitive dysfunc-
tion. The CAG (polyglutamine) expansion affects the open 
reading frame of the HTT gene coding for huntingtin. This 
leads to pathological deposition of huntingtin protein, and 
disruption of gene regulation, metabolic, and signaling 
pathways [193]. Weakened trophic support of neurons and 
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the resulting nuclear accumulation of FOXO3a transcrip-
tion factor might be an important aspect [194]. The role 
of sirtuins in neuronal survival and the known interac-
tions with huntingtin [195] and FOXOs [1] made them a 
plausible research target. However, sirtuins’ role in HD is 
somewhat controversial, likely stemming from their wide, 
pleiotropic spectrum of signaling interactions [193]. Till 
recently, SIRT1 appeared to protect most species from glu-
tamine repeat toxicity, with the notable exception of the 
Drosophila model [193]. Mutant huntingtin reduces SIRT1 
activity, weakening its positive role in neuronal survival. 
It is possible that the structural similarity between mutant 
huntingtin and sirtuin-interacting transcription factors 
might play a role [193]. SIRT1 binds and activates the pro-
moter of brain-derived neurotrophic factor (BDNF); it can 
also augment the expression of crucial genes such as super-
oxide dismutase 2, or mitochondrial biogenesis modulators, 
and can impact Bax signaling via modulation of its bind-
ing to Ku70 [196]. However, evidence for neuroprotective 
influence of selective SIRT1 inhibition in several HD mod-
els including mice has been published in recent years; it has 
been suggested that this approach might augment the clear-
ance of mutant huntingtin [196, 197]. The neuroprotection 
achieved by SIRT2 inhibition is much more consistent with 
the current views on its role [193]. The question of possible 
therapeutic application of sirtuin modulators appears to be 
tough and highly selective approaches seem necessary.

Pharmacological Manipulation of Sirtuin 
Activities for Research and Therapeutic Purposes

A number of pharmacological agents are used to influ-
ence the activity of sirtuins for research purposes [198]. 
HDAC inhibitors display significant level of class specific-
ity: sirtuin inhibitors usually do not affect class I, II or IV 
enzymes, although the selectivity between sirtuins is a fre-
quent issue [199, 200]. Novel indole compounds seems to 
offer good specificity and potency while also offering good 
bioavailability and cell permeability [196]. A new inhibitor 
6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide 
(EX-527) has been shown to be potent and selective towards 
SIRT1 [201]. The inhibitor has been used to investigate the 
role of this isoform in cell physiology and pathology, for 
example in the regulation of inflammatory responses [202, 
203]. In a work on oxidative mitochondrial damage evoked 
by hyperglycemia the SIRT1 inhibitor has been compared 
to the effects of siRNA-mediated SIRT1 knock-down 
[204]. EX-527 has been entered into clinical trials [196]. 
AGK2, an inhibitor selective towards SIRT2 has been used 
in a study to assess the role of this sirtuin in the toxicity 
of α-synuclein, mutant huntingtin, and of SIRT2 in cel-
lular energy metabolism [188, 205, 206]. SIRT2 inhibitor 

AK-7 was also able to offer neuroprotection in a mouse 
HD model [193]. 1,2-dihydro-3H-naphtho[2,1-b]pyran-3-
one (splitomicin) [200]; reviewed in [207] has been used 
as a basis for an array of derivatives with preferential action 
against SIRT2 versus SIRT1 [208]. The specificity of the 
widely employed polyphenolic inhibitor 2-[(2-hydrox-
ynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benza-
mide (sirtinol) [207] has been recently questioned [209]. 
3,4′,5-trihydroxy-trans-stilbene, 5-[(1E)-2-(4-hydroxy-
phenyl)ethenyl]-1,3-benzenediol (resveratrol), a polyphe-
nol with still unclear mechanism of action has been used 
to activate sirtuins, with beneficial effects on metabolic 
regulation, energy metabolism, and organism survival [17, 
210]. However, its lack of specificity makes it highly prob-
lematic as a research tool [211]. It influences the expression 
and activity of nitric oxide synthases, catalase, superoxide 
dismutase, glutathione metabolism, and apoptotic signal-
ing to name a few; only some of these effects are mediated 
by sirtuins [212]. Despite its shortcomings resveratrol has 
entered into clinical trials aimed at sirtuins’ role in healthy 
aging and gender-specific longevity mechanisms, in AD-
related cognitive decline, in muscle function in old age, and 
in the status of a cytoprotective enzyme heme oxygenase-1 
[213–216]. Polyphenolic activators of sirtuins also include 
the powerful and pleiotropic curcumin. The clear need for 
more specific and selective compounds has led to the iden-
tification of a number of new activators such as N-(2-(3-
(piperazin-1-ylmethyl)imidazo[2,1-b]thiazol-6-yl)phenyl)
quinoxaline-2-carboxamide (SRT1720), 4-methyl-N-[2-[3-
(morpholinomethyl)imidazo[2,1-b]thiazol-6-yl]phenyl]-2-
(pyridin-3-yl)thiazole-5-carboxamide (SRT2104), which 
has already been shown to protect against neurodegenera-
tion and motor impairment in a mouse HD model [217]. 
However, despite their therapeutic potential revealed in ani-
mal studies and despite some clinical trials on the improve-
ment of the peripheral metabolic health, clinical CNS data 
are currently lacking [10, 218, 219].

Conclusion

During the past decade, there has been significant progress 
in understanding the role of sirtuins in brain aging and in 
neurodegenerative disorders such as AD [1, 16]. Till now 
relatively little is known about the role of SIRTs in PD or 
Huntighton’s disease [5, 196]. The role of SIRT1 in the 
regulation of APP metabolism and tau deacetylation/phos-
phorylation should be stressed [147, 148]. SIRT1 expres-
sion and activity may significantly affect the course of 
AD pathology and may be a promising therapeutic target. 
Recently, studies focused on mitochondrial SIRTs and their 
roles in antioxidative defense [2]. In oxidative stress and in 
brain aging/neurodegeration down-regulation of the nuclear 
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SIRT6 may influence DNA repair machinery and probably 
also telomere maintenance. SIRT6 participates in homo-
logus recombinationation, in non-homologus end-joining, 
and in base excision DNA repair pathways. It interacts 
with the transcription factor NF-κB, with PARP and with 
other proteins engaged in DNA repair; this suggests SIRT6 
as another promising target in the regulation of longevity 
[73, 105]. Till now controversial findings are published on 
the role of SIRT2 which might be important for longevity 
but also seems to take part in Aβ production, α-synuclein 
toxicity, and neuronal cell death [74, 145, 188]. Insufficient 
data are available on SIRT4 and SIRT5 in mitochondria; 
the knowledge on sirtuin interactions in the regulation of 
cell survival and death in physiology and pathology is also 
leaving something to be desired. Hopefully, further stud-
ies will expand our knowledge about application of sirtuin 
modulators in the therapy of neurodegenerative diseases.
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