Skip to main content

Advertisement

Log in

The Effect of Aging on Mitochondrial Complex I and the Extent of Oxidative Stress in the Rat Brain Cortex

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

One of the characteristic features of the aging is dysfunction of mitochondria. Its role in the regulation of metabolism and apoptosis suggests a possible link between these cellular processes. This study investigates the relationship of respiratory complex I with aging-related oxidative stress in the cerebral mitochondria. Deterioration of complex I seen in senescent (26-months old) mitochondria was accompanied by decline in total thiol group content, increase of HNE and HNE-protein adducts as well as decreased content of complex I subunits, GRIM-19 and NDUFV2. On the other hand, decline of complex I might be related with the mitochondrial apoptosis through increased Bax/Bcl-2 cascade in 15-month old animal brains. Higher amount of Bcl-2, Bcl-xL with the lower content of GRIM-19 could maintain to some extent elevated oxidative stress in mitochondria as seen in the senescent group. In the cortical M1 region increased presence of TUNEL+ cells and more than 20-times higher density of Fluoro-Jade C+ cells in 26-months old was observed, suggesting significant neurodegenerative effect of aging in the neuronal cells. Our study supports a scenario in which the age-related decline of complex I might sensitize neurons to the action of death agonists, such as Bax through lipid and protein oxidative stimuli in mitochondria. Although aging is associated with oxidative stress, these changes did not increase progressively with age, as similar extent of lesions was observed in oxidative stress markers of the both aged groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lam PY, Yin F, Hamilton RT et al (2009) Elevated neuronal nitric oxide synthase expression during ageing and mitochondrial energy production. Free Radic Res 43:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signaling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  3. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25:17–26

    Article  CAS  PubMed  Google Scholar 

  4. Wegrzyn J, Potla R, Chwae YJ et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shulga N, Pastorino JG (2012) GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. J Cell Sci 125:2995–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Navarro A, Boveris A (2008) Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants. Adv Drug Deliv Rev 60:1534–1544

    Article  CAS  PubMed  Google Scholar 

  7. Carroll J, Fearnley IM, Skehel JM et al (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727

    Article  CAS  PubMed  Google Scholar 

  8. Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23:795–807

    Article  CAS  PubMed  Google Scholar 

  9. Fearnley IM, Carroll J, Shannon RJ et al (2001) GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 276:38345–38348

    Article  CAS  PubMed  Google Scholar 

  10. Angell JE, Lindner DJ, Shapiro PS et al (2000) Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J Biol Chem 275:33416–33426

    Article  CAS  PubMed  Google Scholar 

  11. Huang G, Chen Y, Lu H (2007) Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death. Cell Death Differ 14:327–337

    Article  CAS  PubMed  Google Scholar 

  12. Vogel RO, Dieteren CE, Van den Heuvel LP et al (2007) Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J Biol Chem 282:7582–7590

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Yuen WH, Fu J et al (2007) The mitochondrial respiratory chain controls intracellular calcium signaling and NFAT activity essential for heart formation in Xenopus laevis. Mol Cell Biol 27:6420–6432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu H, Cao X (2008) GRIM-19 is essential for maintenance of mitochondrial membrane potential. Mol Biol Cell 19:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palmisano G, Sardanelli AM, Signorile A et al (2007) The phosphorylation pattern of bovine heart complex I subunits. Proteomics 7:1575–1583

    Article  CAS  PubMed  Google Scholar 

  16. Andrews B, Carroll J, Ding S et al (2013) Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci USA 110:18934–18939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janssen RJ, Nijtmans LG, Van den Heuvel LP et al (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515

    Article  CAS  PubMed  Google Scholar 

  18. Ogura M, Yamaki J, Homma MK et al (2012) Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components. Biochem J 447:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nishioka K, Vilariño-Güell C, Cobb CA et al (2012) Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson’s disease. Parkinsonism Relat Disord 16:686–687

    Article  Google Scholar 

  20. Sultanaa R, Butterfield DA (2013) Oxidative modification of brain proteins in Alzheimer’s disease: perspective on future studies based on results of redox proteomics studies. J Alzheimers Dis 33:S243–S251

    Google Scholar 

  21. Akarsu S, Torun D, Bolu A et al (2014) Mitochondrial complex I and III gene mRNA levels in schizophrenia and their relationship with clinical features. J Mol Psychiatry 2:6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mehrabian Z, Chandrasekaran K, Kalakonda S et al (2007) The IFN-beta and retinoic acid-induced cell death regulator GRIM-19 is upregulated during focal cerebral ischemia. J Interferon Cytokine Res 27:383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Michelini LG, Benevento CE, Rossato FA et al (2014) Effects of partial inhibition of respiratory complex I on H2O2 production by isolated brain mitochondria in different respiratory states. Neurochem Res 39:2419–2430

    Article  CAS  PubMed  Google Scholar 

  24. Winklhofer KF, Haass Ch (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802:29–44

    Article  CAS  PubMed  Google Scholar 

  25. Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25:4663–4674

    Article  CAS  PubMed  Google Scholar 

  26. Kaplan P, Tatarkova Z, Račay P et al (2007) Oxidative modifications of cardiac mitochondria and inhibition of cytochrome c oxidase activity by 4-hydroxynonenal. Redox Rep 12:211–218

    Article  CAS  PubMed  Google Scholar 

  27. Dodd PR, Hardy JA, Oakley AE (1981) A rapid method for preparing synaptosomes: comparison with alternative procedures. Brain Res 226:107–118

    Article  CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Tatarkova Z, Kuka S, Račay P et al (2011) Effect of aging on activities of mitochondrial electron transport chain complexes on oxidative damage rat heart. Physiol Res 60:281–289

    CAS  PubMed  Google Scholar 

  30. Jocelyn PC (1987) Spectrophotometric assay of thiols. Methods Enzymol 143:44–67

    Article  CAS  PubMed  Google Scholar 

  31. Kaplan P, Babusikova E, Lehotsky J et al (2003) Free radical induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. Mol Cell Biochem 248:41–47

    Article  CAS  PubMed  Google Scholar 

  32. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    Article  CAS  PubMed  Google Scholar 

  33. Lopez-Otin C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stauch KL, Purnell PR, Fox HS (2014) Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res 13:2620–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu HY, Liao PCh, Chuang KT et al (2011) Mitochondrial targeting of human NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) and its association with early-onset hypertrophic cardiomyopathy and encephalopathy. J Biomed Sci 18:29–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miwa S, Jow H, Baty K et al (2014) Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nat Commun 5:1–12

    Article  Google Scholar 

  37. Petrosillo G, Matera M, Casanova G et al (2008) Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem Int 53:126–131

    Article  CAS  PubMed  Google Scholar 

  38. Sen T, Sen N, Jana S et al (2007) Depolarization and cardiolipin depletion in aged rat brain mitochondria: relationship with oxidative stress and electron transport chain activity. Neurochem Int 50:719–725

    Article  CAS  PubMed  Google Scholar 

  39. Navarro A, Boveris A (2010) Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front Aging Neurosci 2:1–9

    Google Scholar 

  40. Gielisch I, Meierhofer D (2015) Metabolome and proteome profiling of complex I deficiency induced by rotenone. J Proteome Res 14:224–235

    Article  CAS  PubMed  Google Scholar 

  41. Frenzel M, Rommelspacher H, Sugawa MD (2010) Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 45:563–572

    Article  CAS  PubMed  Google Scholar 

  42. Balijepallia S, Annepua J, Boydb MR (1999) Effect of thiol modification on brain mitochondrial complex I activity. Neurosci Lett 272:203–206

    Article  Google Scholar 

  43. Mailloux RJ, Willmore WG (2014) S-glutathionylation reactions in mitochondrial function and disease. Front Cell Dev Biol 2:1–17

    Article  Google Scholar 

  44. Farooqui AA (2014) Neurochemical aspects of oxidative and nitrosative stress. In: Inflammation and oxidative stress in neurological disorders. Springer International Publishing, pp. 175–206. doi:10.1007/978-3-319-04111-7_6

  45. Salminen A, Ojala J, Kaarniranta K (2011) Apoptosis and aging: increased resistance to apoptosis enhances the aging process. Cell Mol Life Sci 68:1021–1031

    Article  CAS  PubMed  Google Scholar 

  46. Chomova M, Tatarkova Z, Dobrota D et al (2012) Ischemia-induced inhibition of mitochondrial complex I in rat brain: effect of permeabilization method and electron acceptor. Neurochem Res 37:965–976

    Article  CAS  PubMed  Google Scholar 

  47. Tammineni P, Anugula Ch, Mohammed F et al (2013) The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. J Biol Chem 288:4723–4732

    Article  CAS  PubMed  Google Scholar 

  48. Zhou Y, Wei Y, Zhu J et al (2011) GRIM-19 disrupts E6/E6AP complex to rescue p53 and induce apoptosis in cervical cancers. PLoS ONE 6:1–12

    Google Scholar 

  49. Wang T, Yan XB, Zhao JJ et al (2011) Gene associated with retinoid-interferon-induced mortality-19 suppresses growth of lung adenocarcinoma tumor in vitro and in vivo. Lung Cancer 72:287–293

    Article  PubMed  Google Scholar 

  50. Szczepanek K, Chen Q, Derecka M et al (2011) Mitochondrial targeted Signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J Biol Chem 286:29610–29620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carpenter R, Lo HW (2014) STAT3 target genes relevant to human cancers. Cancers 6:897–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amaral JD, Xavier JM, Steer CJ et al (2010) The role of p53 in apoptosis. Discov Med 9:145–152

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants VEGA 1/0129/14 from the Ministry of Education and Science of the Slovak Republic and by the project „Biomedical Center Martin“ ITMS code: 26220220187, the project is co-financed from EU sources. We thank Mrs. Zdena Cetlova for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Tatarkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatarkova, Z., Kovalska, M., Timkova, V. et al. The Effect of Aging on Mitochondrial Complex I and the Extent of Oxidative Stress in the Rat Brain Cortex. Neurochem Res 41, 2160–2172 (2016). https://doi.org/10.1007/s11064-016-1931-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1931-z

Keywords

Navigation