Skip to main content
Log in

Comparison of Primary and Secondary Rat Astrocyte Cultures Regarding Glucose and Glutathione Metabolism and the Accumulation of Iron Oxide Nanoparticles

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocyte-rich primary cultures (APCs) are frequently used as a model system for the investigation of properties of brain astrocytes. However, as APCs contain a substantial number of microglial and oligodendroglial cells, biochemical parameters determined for such cultures may at least in part reflect also the presence of the contaminating cell types. To lower the potential contributions of microglial and oligodendroglial cells on properties of the astrocytes in APCs we prepared rat astrocyte-rich secondary cultures (ASCs) by subculturing of APCs and compared these ASCs with APCs regarding basal metabolic parameters, specific enzyme activities and the accumulation of iron oxide nanoparticles. Immunocytochemical characterization revealed that ASCs contained only minute amounts of microglial and oligodendroglial cells. ASCs and APCs did not significantly differ in their specific glucose consumption and lactate production rates, in their specific iron and glutathione contents, in their specific activities of various enzymes involved in glucose and glutathione metabolism nor in their accumulation of iron oxide nanoparticles. Thus, the absence or presence of some contaminating microglial and oligodendroglial cells appears not to substantially modulate the investigated metabolic parameters of astrocyte cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed Central  PubMed  Google Scholar 

  2. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kettenmann H, Verkhratsky A (2011) Neuroglia—living nerve glue. Fortschr Neurol Psychiatr 79:588–597

    Article  CAS  PubMed  Google Scholar 

  4. Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106

    Article  CAS  PubMed  Google Scholar 

  5. Barros LF, Deitmer JW (2010) Glucose and lactate supply to the synapse. Brain Res Rev 63:149–159

    Article  CAS  PubMed  Google Scholar 

  6. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Article  CAS  PubMed  Google Scholar 

  7. Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109:55–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zielke HR, Zielke CL, Baab PJ, Tildon JT (2007) Effect of fluorocitrate on cerebral oxidation of lactate and glucose in freely moving rats. J Neurochem 101:9–16

    Article  CAS  PubMed  Google Scholar 

  9. Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt MM, Dringen R (2012) Glutathione (GSH) synthesis and metabolism. In: Choi IY, Gruetter R (ed) Neural metabolism in vivo, 4th volume, Springer, pp 1029–1050

  11. Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32:1884–1890

    Article  CAS  PubMed  Google Scholar 

  12. Scheiber IF, Dringen R (2013) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 62:556–565

    Article  CAS  PubMed  Google Scholar 

  13. Hohnholt MC, Geppert M, Luther EM, Petters C, Bulcke F, Dringen R (2013) Handling of iron oxide and silver nanoparticles by astrocytes. Neurochem Res 38:227–239

    Article  CAS  PubMed  Google Scholar 

  14. Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588

    Article  CAS  PubMed  Google Scholar 

  15. de Vellis J, Cole R (2012) Preparation of mixed glial cultures from postnatal rat brain. Methods Mol Biol 814:49–59

    Article  PubMed  Google Scholar 

  16. Crocker SJ, Frausto RF, Whitton JL, Milner R (2008) A novel method to establish microglia-free astrocyte cultures: comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia 56:1187–1198

    Article  PubMed Central  PubMed  Google Scholar 

  17. Losciuto S, Dorban G, Gabel S, Gustin A, Hoenen C, Grandbarbe L, Heuschling P, Heurtaux T (2012) An efficient method to limit microglia-dependent effects in astroglial cultures. J Neurosci Methods 207:59–71

    Article  CAS  PubMed  Google Scholar 

  18. Saura J (2007) Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 4:26

    Article  PubMed Central  PubMed  Google Scholar 

  19. Geppert M, Hohnholt MC, Thiel K, Nurnberger S, Grunwald I, Rezwan K, Dringen R (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101

    Article  PubMed  Google Scholar 

  20. Dauth S, Schmidt MM, Rehders M, Dietz F, Kelm S, Dringen R, Brix K (2012) Characterisation and metabolism of astroglia-rich primary cultures from cathepsin K-deficient mice. Biol Chem 393:959–970

    Article  CAS  PubMed  Google Scholar 

  21. Hamprecht B, Loffler F (1985) Primary glial cultures as a model for studying hormone action. Methods Enzymol 109:341–345

    CAS  PubMed  Google Scholar 

  22. Tulpule K, Hohnholt MC, Hirrlinger J, Dringen R (2014) Primary cultures of astrocytes and neurons as model systems to study the metabolism and metabolite export from brain cells. In: Hirrlinger J, Waagepetersen H (ed) Neuromethods: Brain energy metabolism, Springer, Heidelberg (in press)

  23. Kaltenbach JP, Kaltenbach MH, Lyons WB (1958) Nigrosin as a dye for differentiating live and dead ascites cells. Exp Cell Res 15:112–117

    Article  CAS  PubMed  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  25. Geppert M, Hohnholt M, Gaetjen L, Grunwald I, Baumer M, Dringen R (2009) Accumulation of iron oxide nanoparticles by cultured brain astrocytes. J Biomed Nanotechnol 5:285–293

    Article  CAS  PubMed  Google Scholar 

  26. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375

    Article  CAS  PubMed  Google Scholar 

  27. Hirrlinger J, Dringen R (2005) Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol 400:395–409

    CAS  PubMed  Google Scholar 

  28. Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623:208–214

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt MM, Dringen R (2009) Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front Neuroenergetics 1:1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Minich T, Yokota S, Dringen R (2003) Cytosolic and mitochondrial isoforms of NADP+-dependent isocitrate dehydrogenases are expressed in cultured rat neurons, astrocytes, oligodendrocytes and microglial cells. J Neurochem 86:605–614

    Article  CAS  PubMed  Google Scholar 

  31. Gutterer JM, Dringen R, Hirrlinger J, Hamprecht B (1999) Purification of glutathione reductase from bovine brain, generation of an antiserum, and immunocytochemical localization of the enzyme in neural cells. J Neurochem 73:1422–1430

    Article  CAS  PubMed  Google Scholar 

  32. Sola C, Casal C, Tusell JM, Serratosa J (2002) Astrocytes enhance lipopolysaccharide-induced nitric oxide production by microglial cells. Eur J Neurosci 16:1275–1283

    Article  PubMed  Google Scholar 

  33. Walker AG, Chapman J, Bruce CB, Rumsby MG (1984) Immunocytochemical characterisation of cell cultures grown from dissociated 1-2-day post-natal rat cerebral tissue. A developmental study. J Neuroimmunol 7:1–20

    Article  CAS  PubMed  Google Scholar 

  34. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  CAS  PubMed  Google Scholar 

  35. Richardson A, Hao C, Fedoroff S (1993) Microglia progenitor cells: a subpopulation in cultures of mouse neopallial astroglia. Glia 7:25–33

    Article  CAS  PubMed  Google Scholar 

  36. Knorpp T, Robinson SR, Crack PJ, Dringen R (2006) Glutathione peroxidase-1 contributes to the protection of glutamine synthetase in astrocytes during oxidative stress. J Neural Transm 113:1145–1155

    Article  CAS  PubMed  Google Scholar 

  37. Skytt DM, Madsen KK, Pajecka K, Schousboe A, Waagepetersen HS (2010) Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex. Neurochem Res 35:2043–2052

    Article  CAS  PubMed  Google Scholar 

  38. Oberheim NA, Goldmann SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594

    Article  CAS  PubMed  Google Scholar 

  40. Du F, Qian ZM, Zhu L, Wu XM, Qian C, Chan R, Ke Y (2010) Purity, cell viability, expression of GFAP and bystin in astrocytes cultured by different procedures. J Cell Biochem 109:30–37

    CAS  PubMed  Google Scholar 

  41. Vanella A, Avola R, Condorelli DF, Campisi A, Costa A, Guiffrida Stella AM, Perez-Polo JR (1989) Antioxidant enzymatic activities and resistance to oxidative stress in primary and subcultured rat astroglial cells. Int J Dev Neurosci 7:233–241

    Article  CAS  PubMed  Google Scholar 

  42. Codeluppi S, Gregory EN, Kjell J, Wigerblad G, Olson L, Svensson CI (2011) Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes. J Neurosci Methods 197:118–127

    Article  PubMed  Google Scholar 

  43. Goetschy JF, Ulrich G, Aunis D, Ciesielski-Treska J (1986) The organization and solubility properties of intermediate filaments and microtubules of cortical astrocytes in culture. J Neurocytol 15:375–387

    Article  CAS  PubMed  Google Scholar 

  44. Sen E, Basu A, Willing LB, Uliasz TF, Myrkalo JL, Vannucci SJ, Hewett SJ, Levison SW (2011) Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties. ASN Neuro 3:e00062

    Article  PubMed Central  PubMed  Google Scholar 

  45. Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H (2007) Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 25(3):649–658

    Article  PubMed  Google Scholar 

  46. Tilleux S, Berger J, Hermans E (2007) Induction of astrogliosis by activated microglia is associated with a down-regulation of metabotropic glutamate receptor 5. J Neuroimmunol 189:23–30

    Article  CAS  PubMed  Google Scholar 

  47. Passaquin AC, Schreier WA, de Vellis J (1994) Gene expression in astrocytes is affected by subculture. Int J Dev Neurosci 12:363–372

    Article  CAS  PubMed  Google Scholar 

  48. Bolanos JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35:145–149

    Article  CAS  PubMed  Google Scholar 

  49. Figley CR, Stroman PW (2011) The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33:577–588

    Article  PubMed  Google Scholar 

  50. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  CAS  PubMed  Google Scholar 

  51. Tulpule K, Dringen R (2012) Formate generated by cellular oxidation of formaldehyde accelerates the glycolytic flux in cultured astrocytes. Glia 60:582–593

    Article  PubMed  Google Scholar 

  52. Cruz F, Wolf A (2001) Effects of the novel cyclosporine derivative PSC833 on glucose metabolism in rat primary cultures of neuronal and glial cells. Biochem Pharmacol 62:129–139

    Article  CAS  PubMed  Google Scholar 

  53. Zwingmann C, Richter-Landsberg C, Brand A, Leibfritz D (2000) NMR spectroscopic study on the metabolic fate of [3-13C]alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism. Glia 32:286–303

    Article  CAS  PubMed  Google Scholar 

  54. Schmidt MM, Dringen R (2010) Fumaric acid diesters deprive cultured primary astrocytes rapidly of glutathione. Neurochem Int 57:460–467

    Article  CAS  PubMed  Google Scholar 

  55. Hazell AS, Desjardins P, Butterworth RF (1999) Increased expression of glyceraldehyde-3-phosphate dehydrogenase in cultured astrocytes following exposure to manganese. Neurochem Int 35:11–17

    Article  CAS  PubMed  Google Scholar 

  56. O’Brien J, Kla KM, Hopkins IB, Malecki EA, McKenna MC (2007) Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem Res 32:597–607

    Article  PubMed  Google Scholar 

  57. Vasquez OL, Almeida A, Bolanos JP (2001) Depletion of glutathione up-regulates mitochondrial complex I expression in glial cells. J Neurochem 76:1593–1596

    Article  CAS  PubMed  Google Scholar 

  58. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569

    CAS  PubMed  Google Scholar 

  59. Arend C, Brandmann M, Dringen R (2013) The antiretrovial protease inhibitor ritonavir accelerates glutathione export from cultured primary astrocytes. Neurochem Res 38:732–741

    Article  CAS  PubMed  Google Scholar 

  60. Scheiber IF, Dringen R (2011) Copper-treatment increases the cellular GSH content and accelerates GSH export from cultured rat astrocytes. Neurosci Lett 498:42–46

    Article  CAS  PubMed  Google Scholar 

  61. Dringen R, Gutterer JM (2002) Glutathione reductase from bovine brain. Methods Enzymol 348:281–288

    CAS  PubMed  Google Scholar 

  62. Dringen R, Hoepken HH, Minich T, Ruedig C (2007) Pentose phosphate pathway and NADPH metabolism. In: Dienel G, Gibson G (eds) Handbook of neurochemistry and molecular neurobiology, 5th volume: neural energy utilization. Springer, Heidelberg, pp 41–62

    Chapter  Google Scholar 

  63. Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, Dringen R (2006) The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97:373–384

    Article  CAS  PubMed  Google Scholar 

  64. Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69:318–326

    Article  CAS  PubMed  Google Scholar 

  65. Geppert M, Hohnholt MC, Nurnberger S, Dringen R (2012) Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Acta Biomater 8:3832–3839

    Article  CAS  PubMed  Google Scholar 

  66. Bishop GM, Dang TN, Dringen R, Robinson SR (2011) Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia. Neurotox Res 19:443–451

    Article  CAS  PubMed  Google Scholar 

  67. Hoepken HH (2005) Untersuchungen zum Eisenstoffwechsel neuraler Zellen. Dissertation, University of Tuebingen, Germany

    Google Scholar 

  68. Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022

    Article  CAS  PubMed  Google Scholar 

  69. Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  70. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, Gonzalez-Billault C, Nunez MT (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126:541–549

    Article  CAS  PubMed  Google Scholar 

  71. Lamkowsky MC, Geppert M, Schmidt MM, Dringen R (2012) Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes. J Biomed Mater Res A 100A:323–334

    Article  CAS  Google Scholar 

  72. Jenkins SI, Pickard MR, Furness DN, Yiu HH, Chari DM (2012) Differences in magnetic particle uptake by CNS neuroglial subclasses: implications for neural tissue engineering. Nanomedicine (Lond) 8:951–968

    Article  Google Scholar 

  73. Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G (2012) Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci 13:32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Luther EM, Petters C, Bulcke F, Kaltz A, Thiel K, Bickmeyer U, Dringen R (2013) Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater 9:8454–8465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Frank Dietz (University of Bremen) for providing the MAG- and anti-sheep-antibodies and Dr. Eva M. Luther for her help with the analysis of immunocytochemical stainings.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petters, C., Dringen, R. Comparison of Primary and Secondary Rat Astrocyte Cultures Regarding Glucose and Glutathione Metabolism and the Accumulation of Iron Oxide Nanoparticles. Neurochem Res 39, 46–58 (2014). https://doi.org/10.1007/s11064-013-1189-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1189-7

Keywords

Navigation