Skip to main content

Advertisement

Log in

Regulation of ERα Signaling Pathway in Neuronal HN10 Cells: Role of Protein Acetylation and Hsp90

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Estrogen has a variety of neuroprotective effects but the molecular basis of its function is still mainly unclear. Estrogen receptor (ER) signaling is highly dependent on posttranslational modifications and the assembly of coactivator and corepressor complexes. Several proteins involved in ERα signaling have recently been found to be acetylated, including ERα itself and Hsp90, a key chaperone in the functional regulation of ERα. ERα complexes also contain histone deacetylases (HDAC) which repress transactivation. Our purpose was to clarify the role of protein acetylation and Hsp90 function in the ERE-mediated ERα signaling in neuronal HN10 cells. We observed that increasing protein/histone acetylation status with trichostatin A, a potent HDAC inhibitor, increased the 17β-estradiol (E2)-induced transactivation of ERE-driven luciferase in non-transfected cells, and even more extensively in pERα-transfected cells. E2-induced ERE-driven transactivation was blocked by ICI 182.780. Several ER antagonists, such as raloxifene and tamoxifen, were unresponsive. Valproate, an antiepileptic drug which is recently characterized as a HDAC inhibitor, was also able to potentiate the E2-induced ERE-transactivation. Inhibition of the function of Hsp90 chaperone with geldanamycin strongly inhibited the E2-induced ERE-transactivation. Overexpression of SIRT2 protein deacetylase did not inhibit the acetylation-potentiated ERE-driven transactivation indicating that SIRT2 deacetylase is not involved in ERα signaling. Our results reveal that ERα signaling is dependent on protein acetylation and epigenetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Behl C (2002) Oestrogen as a neuroprotective hormone. Nature Rev Neurosci 3:433–442

    CAS  Google Scholar 

  2. Dhandapani KM, Brann DW (2002) Protective effects of estrogen and selective estrogen receptor modulators in the brain. Biol Reprod 67:1379–1385

    Article  PubMed  CAS  Google Scholar 

  3. Pozzi S, Benedusi V, Maggi A, Vegeto E (2006) Estrogen action in neuroprotection and brain inflammation. Ann NY Acad Sci 1089:302–323

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki S, Brown CM, Wise PM (2006) Mechanisms of neuroprotection by estrogen. Endocrine 29:209–215

    Article  PubMed  CAS  Google Scholar 

  5. Prokai L, Simpkins JW (2007) Structure-nongenomic neuroprotection relationship of estrogens and estrogen-derived compounds. Pharmacol Ther 114:1–12

    Article  PubMed  CAS  Google Scholar 

  6. Coleman MK, Smith CL (2001) Intracellular signaling pathways: nongenomic actions of estrogen and ligand-independent activation of estrogen receptors. Front Biosci 6:D1379–D1391

    Article  PubMed  CAS  Google Scholar 

  7. Barnes CJ, Vadlamudi RK, Kumar R (2004) Novel estrogen receptor coregulators and signaling molecules in human diseases. Cell Mol Life Sci 61:281–291

    Article  PubMed  CAS  Google Scholar 

  8. Mhyre AJ, Dorsa DM (2006) Estrogen activates rapid signaling in the brain: role of estrogen receptor alpha and estrogen receptor beta in neurons and glia. Neurosci 138:851–858

    Article  CAS  Google Scholar 

  9. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M, Gustafsson J-A (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87:905–931

    Article  PubMed  CAS  Google Scholar 

  10. Acconcia F, Kumar R 2006) Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett 238:1–14

    Article  PubMed  CAS  Google Scholar 

  11. Kim MY, Hsiao SJ, Kraus WL (2001) A role for coactivators and histone acetylation in estrogen receptor α-mediated transcription initiation. EMBO J 21:6084–6094

    Article  Google Scholar 

  12. Leader JE, Wang C, Fu M, Pestell RG (2006) Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol 72:1589–1596

    Article  PubMed  CAS  Google Scholar 

  13. Picard D (2006) Chaperoning steroid hormone action. Trends Endocrinol Metab 17:229–235

    Article  PubMed  CAS  Google Scholar 

  14. Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SAW, Lopez GN, Kushner PJ, Pestell RG (2001) Direct acetylation of the estrogen receptor α hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem 276:18375–18383

    Article  PubMed  CAS  Google Scholar 

  15. Margueron R, Duong V, Castet A, Cavailles V (2004) Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochem Pharmacol 68:1239–1246

    Article  PubMed  CAS  Google Scholar 

  16. Popov VM, Wang C, Shirley LA, Rosenberg A, Li S, Nevalainen M, Fu M, Pestell RG (2007) The functional significance of nuclear receptor acetylation. Steroids 72:221–230

    Article  PubMed  CAS  Google Scholar 

  17. Sabbah M, Radanyi C, Redeuilh G, Baulieu E-E (1996) The 90 kDa heat-shock protein (hsp90) modulates the binding of the oestrogen receptor to its cognate DN. Biochem J 314:205–213

    PubMed  CAS  Google Scholar 

  18. Pratt WB, Galigniana MD, Morishima Y, Murphy PJ (2004) Role of molecular chaperones in steroid receptor action. Essays Biochem 40:41–58

    PubMed  CAS  Google Scholar 

  19. Aoyagi S, Archer TK (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15:565–567

    Article  PubMed  CAS  Google Scholar 

  20. Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, Rosen N, Neckers L (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159

    Article  PubMed  CAS  Google Scholar 

  21. Leong H, Sloan JR, Nash PD, Greene GL (2005) Recruitment of histone deacetylase 4 to the N-terminal region of estrogen receptor alpha. Mol Endocrinol 19:2930–2942

    Article  PubMed  CAS  Google Scholar 

  22. Itoh Y, Hayashi H, Miyazawa K, Kojima S, Akahoshi T, Onozaki K (2007) 17β-Estradiol induces IL-1α gene expression in rheumatoid fibroblast-like synovial cells through estrogen receptor α (ERα) and augmentation of transcriptional activity of Sp1 by dissociating histone deacetylase 2 from ERα. J Immunol 178:3059–3066

    PubMed  CAS  Google Scholar 

  23. Lee HJ, Hammond DN, Large TH, Roback JD, Sim JA, Brown DA, Otten UH, Wainer BH (1990) Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice. J Neurosci 10:1779–1787

    PubMed  CAS  Google Scholar 

  24. Jeong MR, Hashimoto R, Senatorov VV, Fujimaki K, Ren M, Lee MS, Chuang DM (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett 542:74–78

    Article  PubMed  CAS  Google Scholar 

  25. Göttlicher M (2004) Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann Hematol 83 Suppl 1:S91–92

    PubMed  Google Scholar 

  26. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90. A novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    Article  PubMed  CAS  Google Scholar 

  27. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  PubMed  CAS  Google Scholar 

  28. Fan M, Park A, Nephew KP (2005) CHIP (carboxyl terminus of Hsc70-interacting protein) promotes basal and geldanamycin-induced degradation of estrogen receptor-α. Mol Endocrinol 19:2901–2914

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida M, Horinouchi S, Beppu T (1995) Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17:423–430

    Article  PubMed  CAS  Google Scholar 

  30. Mao C, Shapiro DJ (2000) A histone deacetylase inhibitor potentiates estrogen receptor activation of a stably integrated vitellogenin promoter in HepG2 cells. Endocrinology 141:2361–2369

    Article  PubMed  CAS  Google Scholar 

  31. Graziani G, Tentori L, Portarena I, Vergati M, Navarra P (2003) Valproic acid increases the stimulatory effect of estrogens on proliferation of human endometrial adenocarcinoma cells. Endocrinology 144:2822–2828

    Article  PubMed  CAS  Google Scholar 

  32. Mendez P, Garcia-Segura LM (2006 Phosphatidylinositol 3-kinase and glycogen synthase kinase 3 regulate estrogen receptor-mediated transcription in neuronal cells. Endocrinology 147:3027–3039

    Article  PubMed  CAS  Google Scholar 

  33. Cullinan SB, Whitesell L (2006) Heat shock protein 90: a unique chemotherapeutic target. Semin Oncol 33:457–465

    Article  PubMed  CAS  Google Scholar 

  34. Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S, Itoh A, Funata N, Schreiber SL, Yoshida M, Toi M (2005) Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 24:4531–4539

    Article  PubMed  CAS  Google Scholar 

  35. Segnitz B, Gehring U (1997) The function of steroid hormone receptors is inhibited by the hsp90-specific compound geldanamycin. J Biol Chem 272:18694–18701

    Article  PubMed  CAS  Google Scholar 

  36. Beliakoff J, Whitesell L (2004) Hsp90: an emerging target for breast cancer therapy. Anticancer Drugs 15:651–662

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Academy of Finland (J.O., A.S.), University Hospital of Kuopio (EVO 5510) and the University of Kuopio (T.S., K.K. and A.S.), Finland. The authors thank Prof. Pirkko Härkönen for kindly providing plasmids and Dr. Ewen MacDonald for checking the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antero Salminen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suuronen, T., Ojala, J., Hyttinen, J.M.T. et al. Regulation of ERα Signaling Pathway in Neuronal HN10 Cells: Role of Protein Acetylation and Hsp90. Neurochem Res 33, 1768–1775 (2008). https://doi.org/10.1007/s11064-008-9622-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9622-z

Keywords

Navigation