Skip to main content

Advertisement

Log in

Molecular profiles for insular low-grade gliomas with putamen involvement

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

The newly proposed putamen classification system shows good prognostic value in patients with insular LGGs, yet no study towards the molecular profiles of putamen involved LGGs has been proposed.

Methods

Clinical information and imaging data of patients diagnosed with insular low-grade gliomas were collected retrospectively. Genetic information of the 34 tumors was assessed using RNA-sequencing. Gene set enrichment analysis was further performed to identify the genes showing differential expression between putamen-involved tumors and putamen non-involved tumors. The level of Ki-67 expression was also evaluated.

Results

There were 843 genes identified to be differentially expressed between putamen-involved and non-involved gliomas. Specifically, Gene set enrichment analysis discovered 13 Kyoto Encyclopedia of Genes and Genomes pathways and 37 Gene Ontology Biological Process term were upregulated in putamen-involved low-grade glioma cells. The enriched GO sets with the highest gene counts included cell cycle (42 genes), mitotic cell cycle (24 genes), and cell division (19 genes). Furthermore, high expression of Ki-67 was associated with putamen involvement in insular gliomas.

Conclusions

There is clear genetic variation between putamen-involved and non-involved insular low-grade gliomas. The differential expression of genes related to the processes of cell proliferation, cell migration, or DNA repair may lead to putamen involvement. The findings suggest that among the two subtypes, putamen-involved insular low-grade gliomas have higher malignancy, and the clinical treatment towards the putamen-involved insular low-grade gliomas should be more active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yasargil MG (1994) Microneurosurgery, vol 4b. Thieme, Stuttgart

    Google Scholar 

  2. Yasargil MG, von Ammon K, Cavazos E, Doczi T, Reeves JD, Roth P (1992) Tumours of the limbic and paralimbic systems. Acta Neurochir 118(1–2):40–52

    Article  PubMed  CAS  Google Scholar 

  3. Ozyurt E, Kaya AH, Yanriverdi T et al (2003) New classification for insular tumors and surgical results of 40 patients. Neurosurg Q 13:138–148

    Article  Google Scholar 

  4. Saito R, Kumabe T, Kanamori M, Sonoda Y, Tominaga T (2010) Insulo-opercular gliomas: four different natural progression patterns and implications for surgical indications. Neurol Med Chir 50(4):286–290

    Article  Google Scholar 

  5. Mandonnet E, Capelle L, Duffau H (2006) Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns. J Neurooncol 78(2):179–185

    Article  PubMed  Google Scholar 

  6. Moshel YA, Marcus JD, Parker EC, Kelly PJ (2008) Resection of insular gliomas: the importance of lenticulostriate artery position. J Neurosurg 109(5):825–834

    Article  PubMed  Google Scholar 

  7. Ebeling U, Kothbauer K (1995) Circumscribed low grade astrocytomas in the dominant opercular and insular region: a pilot study. Acta Neurochir 132(1–3):66–74

    Article  PubMed  CAS  Google Scholar 

  8. Sanai N, Polley MY, Berger MS (2010) Insular glioma resection: assessment of patient morbidity, survival, and tumor progression. J Neurosurg 112(1):1–9

    Article  PubMed  Google Scholar 

  9. Tang C, Zhang ZY, Chen LC et al (2016) Subgroup characteristics of insular low-grade glioma based on clinical and molecular analysis of 42 cases. J Neurooncol 126(3):499–507

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Wang Y, Fan X et al (2017) Putamen involvement and survival outcomes in patients with insular low-grade gliomas. J Neurosurg 126(6):1788–1794

    Article  PubMed  Google Scholar 

  11. Bao ZS, Chen HM, Yang MY et al (2014) RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res 24(11):1765–1773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  PubMed  CAS  Google Scholar 

  13. Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6(7):e21800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Stillman B (1996) Cell Cycle Control of DNA replication. Science 274:1659–1663

    Article  PubMed  CAS  Google Scholar 

  15. Lawo S, Bashkurov M, Mullin M et al (2009) HAUS, the 8-subunit human Augmin complex, regulates centrosome and spindle integrity. Curr Biol 19(10):816–826

    Article  PubMed  CAS  Google Scholar 

  16. DeGregori J (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 1602:131–150

    PubMed  CAS  Google Scholar 

  17. Jorissen R (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284(1):31–53

    Article  PubMed  CAS  Google Scholar 

  18. Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ (2017) A central role for cadherin signaling in cancer. Exp Cell Res 358(1):78–85

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126(Pt 2):393–401

    Article  PubMed  CAS  Google Scholar 

  20. Craig SE, Brady-Kalnay SM (2011) Cancer cells cut homophilic cell adhesion molecules and run. Cancer Res 71(2):303–309

    Article  PubMed  CAS  Google Scholar 

  21. Wells A (1999) EGF receptor. Int J Biochem Cell Biol 31:637–643

    Article  PubMed  CAS  Google Scholar 

  22. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Murat A, Migliavacca E, Gorlia T et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26(18):3015–3024

    Article  PubMed  CAS  Google Scholar 

  24. Zhou BBS, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433

    Article  PubMed  CAS  Google Scholar 

  25. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11(12):1513–1530

    PubMed  CAS  Google Scholar 

  26. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8(3):193–204

    Article  PubMed  CAS  Google Scholar 

  27. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  PubMed  CAS  Google Scholar 

  28. Scrima A, Konickova R, Czyzewski BK et al (2008) Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 135(7):1213–1223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Krynetskaia NF, Phadke MS, Jadhav SH, Krynetskiy EY (2009) Chromatin-associated proteins HMGB1/2 and PDIA3 trigger cellular response to chemotherapy-induced DNA damage. Mol Cancer Ther 8(4):864–872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764 (discussion 264–756)

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Basic Research Program of China (No. 2015CB755500), National Natural Science Foundation of China (No. 81601452), Beijing Natural Science Foundation (No. 7174295) and Key science and technology research project of the Hebei provincial health and Family Planning Commission (No. 20171258).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinyan Wang or Lei Wang.

Ethics declarations

Conflict of interest

We report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Ethical approval

This retrospective study was approved by the institutional review board of Beijing Tiantan hospital, written consent was obtained from all of our enrolled patients.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Wang, Y., Liu, X. et al. Molecular profiles for insular low-grade gliomas with putamen involvement. J Neurooncol 138, 659–666 (2018). https://doi.org/10.1007/s11060-018-2837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2837-1

Keywords

Navigation