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Abstract

Mutation of the IDH1 gene is associated with differences in malignant astrocytoma growth 

characteristics that impact phenotypic severity, including cognitive impairment. We previously 

demonstrated greater cognitive impairment in patients with IDH1 wild type tumor compared to 

those with IDH1 mutant, and therefore we hypothesized that brain network organization would be 

lower in patients with wild type tumors. Volumetric, T1-weighted MRI scans were obtained 

retrospectively from 35 patients with IDH1 mutant and 32 patients with wild type malignant 

astrocytoma (mean age = 45 ± 14 years) and used to extract individual level, gray matter 

connectomes. Graph theoretical analysis was then applied to measure efficiency and other 

connectome properties for each patient. Cognitive performance was categorized as impaired or not 

and random forest classification was used to explore factors associated with cognitive impairment. 

Patients with wild type tumor demonstrated significantly lower network efficiency in several 

medial frontal, posterior parietal and subcortical regions (p < 0.05, corrected for multiple 

comparisons). Patients with wild type tumor also demonstrated significantly higher incidence of 

cognitive impairment (p = 0.03). Random forest analysis indicated that network efficiency was 

inversely, though nonlinearly associated with cognitive impairment in both groups (p < 0.0001). 

Cognitive reserve appeared to mediate this relationship in patients with mutant tumor suggesting 

greater neuroplasticity and/or benefit from neuroprotective factors. Tumor volume was the greatest 

contributor to cognitive impairment in patients with wild type tumor, supporting our hypothesis 

that greater lesion momentum between grades may cause more disconnection of core 

neurocircuitry and consequently lower efficiency of information processing.
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Introduction

Malignant astrocytoma are an aggressive form of cerebral neoplasm, though proliferation 

and invasion characteristics can vary widely, even among tumors within the same 

histopathological grade [1]. Recently, tumor molecular markers have been identified as 

better predictors of growth kinetics than classical histology. Specifically, patients with 

mutation of the isocitrate dehydrogenase 1 (IDH1) gene [2] exhibit a marked survival benefit 

over patients with the wild-type tumor, independent of age and histologic grading [3, 4]. 

Such survival differences are believed to reflect growth characteristics unique to IDH1 
subtypes. Mutant gliomas have a more diffuse pattern of growth and slower rate of cell 

proliferation, both of which are associated with better prognosis [1].

Differences in tumor proliferation and invasion characteristics, or “lesion momentum” [5] 

may also impact cognitive impairment, which is a frequent presenting problem in these 

patients [6]. We recently demonstrated that patients with wild type malignant gliomas show 

greater cognitive dysfunction compared to their mutant counterparts [7]. Additionally, 

greater lesion size was associated with worse cognition almost exclusively in patients with 

wild type tumors. Taken together, these findings suggest that the more severe cognitive 

impairment in patients with wild type malignant gliomas may relate to reduced 

neuroplasticity attributable to the greater lesion momentum characteristic of this molecular 

variant of malignant astrocytoma.

Measurements of brain connectivity can provide important insights regarding the neural 

mechanisms underlying cognitive function and dysfunction. Although tumors represent focal 

lesions within the brain, they tend to be associated with global cognitive deficits [8], 

suggesting both local and distant disruption of neurocircuitry. In fact, studies have 

demonstrated that cognitive performance is associated with reduced connectivity of large-

scale, functional brain networks in both low and high grade gliomas [9–11].

Brain networks can be evaluated, among other methods, using coordinated variations in gray 

matter volumes. These structural covariance networks are believed to reflect underlying 

axonal connections as well as common genetic, neurodevelopmental and neuroplastic 

processes involved in the formation of functional neural communities [12, 13]. Accordingly, 

our group and others have shown that structural covariance networks are consistent with 

intrinsic functional and diffusion-derived white matter networks [14, 15] and are highly 

reproducible and reliable [16]. Furthermore, alterations in structural covariance networks are 

consistently observed in various neurologic syndromes [17, 18], including non-CNS cancer-

related neurotoxicity [19].

Brain networks, or connectomes, are organized such that specialized regions are highly 

connected to their neighbors but sparsely connected to distant regions. This “small-world” 

architecture allows for efficient information exchange and parallel processing with minimal 

wiring cost [20, 21]. These complex network properties can be elegantly elucidated by 

applying graph theoretical analysis [22]. Previous studies employing this method have 

shown altered functional brain network organization in low and high grade glioma that is 

associated with cognitive status [23–26] and other studies have shown altered gray matter 
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structure in glioma using voxel-based morphometry [27, 28]. However, no studies to date 

have examined potential differences in brain network connectivity related to tumor 

genotype. We therefore compared structural covariance networks between wild type and 

mutant malignant astrocytoma. We hypothesized that network organization, as indicated by 

efficiency, would be lower in patients with wild type tumors, reflecting greater lesion 

momentum, and that disrupted network connectivity would be associated with cognitive 

impairment.

Materials and methods

Participants

Patients with a centrally reviewed diagnosis of supratentorial, WHO grade III anaplastic 

astrocytoma or WHO grade IV glioblastoma, whose first therapeutic intervention was an 

open surgical resection at our institution from November 1993 to April 2009, with formalin-

fixed, paraffin-embedded tissue, were cross-referenced with our neuropsychology database. 

A total of 69 patients were identified who met inclusion criteria [29], had detailed 

presurgical neuropsychological evaluation and anatomic MRI at the time of 

neuropsychological evaluation. Of these, 37 were mutant and 32 were wild type. There was 

no difference between the groups in education level, gender, tumor hemisphere or location 

but patients with mutant tumor demonstrated larger tumor volumes, less incidence of 

glioblastoma, younger age and higher Karnofsky performance status (Table 1). Tissue block 

acquisition, immunohistochemistry and DNA sequencing methods are detailed elsewhere 

[30]. The University of Texas MD Anderson Cancer Center Institutional Review Board 

approved this retrospective study.

Neuroimaging

We obtained the high resolution, T1-weighted MRI scans that were acquired for each patient 

as part of their presurgical standard of care. The median interval between 

neuropsychological evaluation and MRI was 1 day but there were a few outliers in the wild 

type group resulting in a significant group difference in this interval (W = 396, p = 0.02). 

Therefore, this interval (referred to hereafter as “testing interval”) was included as a 

covariate in relevant analyses.

MRIs were obtained using a GE Signa HDxt 1.5 or 3 T whole body scanner (General 

Medical Systems, Milwaukee, WI) with the following parameters: 1.2–1.5 mm slice 

thickness, 256 × 192 acquisition matrix, echo time = 2.1 or 4.2 ms, repetition time = 

minimum, field of view = 250 or 260 mm, flip angle = 20, 124 slices. There were slightly 

more patients in the wild type group who had 1.5 T scans (X2 = 2.74, p = 0.10) so this was 

used as a covariate in all neuroimaging analyses. Gadolinium-enhanced T1-weighted and T2 

fluid-attenuated inversion recovery (FLAIR) images were acquired concurrently and used to 

determine lesion characteristics.

Lesion size and location

Tumor segmentation was semi-automated using the Vitrea 2 three-dimensional volumetric 

software (Vital Images, Minnetonka, MN) and was overseen by experienced, board certified 
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neurosurgeons (GR, DC). Personnel scoring the tumor volumes were blinded to molecular 

stratification. Tumor volume was defined as the greater of the hypointense region on T1-

weighted MRI, or the hyperintense area on the gadolinium-enhanced T1-weighted MRI. 

FLAIR volume was defined as the area of hyperintensity identified on the T2 FLAIR MRI 

sequence. Tumor location was categorized according to the primary location of the tumor. 

Multifocal tumors were assigned location based on the largest component of the tumor mass.

Cognitive assessment

Cognitive testing was conducted as part of a comprehensive, presurgical evaluation 

involving a flexible battery approach performed for clinical purposes (Table 2). Test scores 

were standardized using published normative data, all of which were stratified by patient 

age, in addition to gender, handedness, and level of education when appropriate, and 

converted into z-scores (mean = 0, standard deviation = 1).

Structural covariance networks

MRIs were visually inspected and the scan of one participant in the mutant group was 

excluded for poor image quality. Gray matter volumes were segmented from T1-weighted 

MRI using voxel-based morphometry (VBM) via VBM8 Toolbox in Statistical Parametric 

Mapping 8 (SPM8) [31, 32]. Lesions can reduce the accuracy of spatial normalization 

techniques. We employed diffeomorphic anatomical registration through exponentiated lie 

algebra (DARTEL), which uses a large deformation framework to preserve topology and 

employs customized, sample-specific templates [33] resulting in superior image registration, 

even in lesioned brains, compared to other automated methods [34]. Successful 

normalization was confirmed via visual inspection using the check registration function in 

SPM8 as well as with whole volume slice montages. Normalized image quality was further 

evaluated with the check sample homogeneity function in VBM8 Toolbox.

Gray matter covariance networks were constructed for each patient using an innovative 

similarity-based extraction method [35].1 Network nodes were defined as 3 × 3 × 3 voxel 

cubes spanning the entire gray matter volume (i.e. 27 gray matter values per cube). A 

correlation matrix was calculated across all pairs of nodes and binarized based on a 

threshold estimated from a random network and false discovery rate (FDR) [35, 36]. We 

ensured that no binarized matrices were disconnected (i.e. had isolated nodes). Matrices 

were then submitted to graph theoretical analysis using Brain Connectivity Toolbox [37] and 

in-house code (https://github.com/srkesler/bNets.git) implemented in Matlab v2014b 

(Mathworks, Inc, Natick, MA). Connectome metrics were calculated as described previously 

[35, 38, 39]. Specifically, efficiency is defined as the inverse of the average shortest path 

between nodes and is high when nodes are able to interact directly. Degree refers to the 

number of connections a region has indicating how much that region is interacting with 

other regions in the network. To facilitate evaluation of regionally specific network effects, 

gray matter volumes were collapsed across 90 Automated Anatomical Labeling atlas [40].

1Extract Individual GM Networks Toolbox v20150902 https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks.
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Statistical analyses

Cognitive impairment—Cognitive performance was categorized as impaired if two or 

more tests had a z-score at or below −1.5 and/or one or more test had a z-score at or below 

−2.0 [39, 41]. Impairment could not be categorized for one participant in the mutant group 

due to missing data. Group difference in cognitive impairment was evaluated using logistic 

regression. T1 tumor volume was included as a covariate in the model since it differed 

between groups. We also included education level considering its significant independent 

contribution, as a proxy of cognitive reserve [42], to cognitive outcome following cancer 

[43] and other neurologic conditions. Age and histology were not included in this or any 

other models given that these variables reflect the known etiologic and pathologic 

differences associated with IDH1 subtypes [7, 44].

Brain network efficiencies—Global and local network efficiencies were evaluated 

separately using the general linear model. These models also included education as a 

covariate considering previous research showing that cognitive reserve mediates pathologic 

effects on brain network properties [39, 45, 46]. Total brain volume, network size and 

scanner field strength were also included. Degree is known to affect network properties in 

addition to network size [47] but including this variable resulted in a non-convergent model. 

This appeared to reflect the high correlation between degree and efficiency in both groups (r 

> 0.91, p < 0.0001). Therefore, degree was examined separately as an independent variable 

with the same covariates as above and also by fitting the power-law to the cumulative degree 

distribution [39, 48]. Since the effect of tumor volume on brain networks is unknown, 

models were compared with and without this variable. Nodal efficiencies were first 

corrected for covariates using linear regression and then group differences were measured 

multivariately with nonparametric permutation testing (2000 iterations) [38], FDR corrected.

Predictors of cognitive impairment—Given the large number of potential predictors, 

small sample size and presence of categorical variables as well as our prior observations of 

nonlinear interactions between brain metrics and cognitive outcome [38], we explored 

random forest models [49] of cognitive impairment. Global efficiency, tumor volume, 

scanner field strength, total brain volume, network size, testing interval, education level, 

Karnofsky Performance Scale score, tumor region (1 = frontal, 2 = temporal, 3 = parietal), 

multifocal tumor (0 = no, 1 = yes) and tumor hemisphere (1 = left, 2 = right) were included 

as potential features. Given the relationship of cognitive reserve (i.e. education level) with 

neural plasticity and repair [50, 51], we also examined a global efficiency*education 

interaction term. Variable importance was evaluated using mean decrease in Gini index [52]. 

Because classes (impaired vs. not impaired) were imbalanced in both groups, random 

minority over-sampling was employed [53, 54]. Predictions were made using the out-of-bag 

error estimate [55] complemented by leave-one-out cross-validation. Significance was 

evaluated using a two-sided exact binomial test of accuracy in addition to the area under the 

curve (AUC) of the receiver operating characteristic.

All statistical analyses were conducted using the R statistical package (R Foundation).
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Results

Cognitive performance

Consistent with our previous study, the wild type group demonstrated significantly more 

frequent cognitive impairment (X2 = 3.3, p = 0.03) compared to mutant (Table 3).

Brain network efficiencies

As a validation step, all participants demonstrated an expected small-world brain network 

organization as indicated by a small-worldness index greater than 1 [56]. Compared to 

mutant, the wild type group demonstrated lower global (F = 3.98, p = 0.05) and local (F = 

3.54, p = 0.06) efficiencies (Table 3).

Regional analysis indicated significantly (p < 0.05, FDR corrected) lower efficiency in left 

amygdala, left angular gyrus, left calcarine sulcus, left caudate, right cuneus, bilateral 

inferior orbital gyri, left middle frontal orbital gyrus, bilateral lingual gyri, right inferior 

occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule in the wild 

type group compared to mutant. The wild type group also showed significantly higher nodal 

efficiency in left supramarginal gyrus (Fig. 1).

Brain network degree

The wild type group showed significantly lower average degree (F = 4.27, p = 0.04) 

compared to mutant. While the cumulative degree distribution of the mutant group 

demonstrated goodness of fit with a power-law (X2 = 0.07, p = 0.95), wild type did not (X2 

= 0.13, p = 0.0, Fig. 2). Power-law fit was lower in wild type compared to mutant (X2 = 

2.19, p = 0.03).

The inclusion of tumor volume in the models lowered significance somewhat (global 

efficiency p = 0.06; local efficiency p = 0.08; degree p = 0.06) but appeared only to reduce 

statistical power given that it was not a significant covariate (p > 0.94) so results are reported 

with tumor volume excluded.

Predictors of cognitive impairment

In the mutant group, random forest classification indicated a significant model of cognitive 

impairment that included, in order of importance, the global efficiency*education interaction 

term, education, global efficiency, total brain volume, and network size (out-of-bag accuracy 

= 84%, p < 0.0001, AUC = 0.96; leave-one-out cross validation accuracy = 84%, p < 0.0001, 

AUC = 0.96, Fig. 3).

In the wild type group, the final model included, in order of importance, network size, tumor 

volume, total brain volume and global efficiency (out-of-bag accuracy = 96%, p < 0.0001, 

AUC = 1.0, leave-one-out cross validation accuracy = 94%, AUC = 1.0, Fig. 3).

Discussion

We demonstrated that patients with IDH1 mutant tumor have significantly higher brain 

network global efficiency and degree compared to patients with wild type tumor, despite 
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having larger tumor volumes. Lower efficiency indicates that, compared to mutant, brain 

network organization is less integrated in patients with wild type tumor and specifically, has 

inferior capacity for parallel information processing [57]. Regional analysis indicated 

diffusely lower connectivity of the wild type brain network including several medial frontal, 

posterior parietal and subcortical regions, which leaves fewer parallel paths, restricting 

information flow to longer-range paths. This dysconnectivity was confirmed by significantly 

lower network degree in patients with wild type tumor given that degree indicates a region’s 

total number of connections [37]. The slower growth of the mutant tumor likely allows the 

brain time to adapt to the tumor’s presence and reorganize critical neurocircuitry, similar to 

what is observed in low grade gliomas [58].

The resilience and plasticity of the brain network depends largely on a minimal set of 

regions. In this regard, the brain network tends to demonstrate a power-law distribution [48] 

wherein the majority of information processing is handled by a small number of core regions 

or hubs. The brain network is highly vulnerable to disruption of these regions [59] and 

accordingly, many neurologic and neurodegenerative conditions are associated with 

disconnection of these influential hubs [60]. For example, Ius et al. [61] proposed that 

surgical resection of certain core regions that they termed the “minimal common brain” has 

a high probability of permanent neurologic deficit. The cumulative degree distribution in 

patients with wild type tumor showed a significantly poorer power-law fit compared to 

patients with mutant tumor. Specifically, patients with wild type tumor showed a steeper 

exponential decay in the probability of high degree regions, which indicates fewer hubs.

Many of the hubs critical for brain network robustness are located within the default mode 

network [59, 62], which is important for a variety of cognitive functions. Given its relative 

metabolic demands and vulnerability to toxicity, this network is highly sensitive to various 

disease states [63]. Connectivity of these areas was significantly lower in patients with wild 

type tumor compared to mutant. These findings are consistent with a previous study 

demonstrating the sensitivity of default mode network connectivity to glioma WHO grade 

[9]. Our results indicate that higher cognitive impairment in patients with wild type tumor 

may reflect greater disruption of the brain’s structural core by wild type tumor 

characteristics. These may include metabolic disruptions, vascular effects and/or white 

matter infiltration, among others.

Unlike most previous studies of structural covariance networks, the similarity-based 

extraction method we applied [35] resulted in individual level networks that allowed us to 

examine correlates with cognitive outcome. We observed that global efficiency was 

significantly inversely, though nonlinearly, associated with cognitive impairment in patients 

with mutant tumor and this relationship was mediated by cognitive reserve, which is 

inherently tied to neural plasticity and repair [51]. A greater magnitude of neuropathology 

tends to be required for clinical effects to become manifest in individuals with higher 

cognitive reserve [42] and cognitive reserve is believed to increase neural reorganization 

following neurologic injury and disease [50].

In patients with wild type tumor, global efficiency was also inversely associated with 

cognitive impairment but tumor volume was a more important contributor. Additionally, 
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education was not a significant factor. This finding suggests that the typical mediating effect 

of cognitive reserve on neuropathology and cognitive function may not be present in patients 

with wild type tumor, possibly because the neuroplastic mechanisms associated with 

cognitive reserve cannot keep pace with the greater lesion momentum of this molecular 

variant. Network size was actually the most important variable in the wild type cognitive 

impairment model. Given that high Gini index can sometimes reflect interaction effects [52], 

we explored, post hoc, the joint variable importance [64] of all pairs of features in the wild 

type cognitive impairment final model. This revealed that larger tumor volume tended to be 

associated with smaller network size in patients with wild type tumor (r = −0.30, p = 0.09). 

Thus, tumor volume is likely the greatest contributor to cognitive impairment in this group.

In addition to small sample size and the retrospective design, there are certain other 

limitations to our findings. The most significant is the combination of data from two 

different MRI field strengths. However, we conducted thorough image quality assurance and 

controlled for field strength in our analyses. Another caveat pertains to the comparison of 

networks of different size and degree as thresholding for networks remains an ongoing issue 

of debate [47]. We ensured that no nodes were disconnected after thresholding, covaried for 

size, and evaluated degree separately. Additionally, a non-cancer comparison group is 

necessary to more comprehensively evaluate the effects of IDH1 molecular variants on 

cognition and brain network organization. Lastly, we only controlled for the structural 

imaging variables that differed between the groups so that we were able to demonstrate that 

the structural network effects were independent of tumor or lesion size. We readily 

acknowledge the difficulties in delineating the tumor border from other pathological changes 

within the brain (e.g., edema) especially in the setting of non-enhancing lesions.

In conclusion, our findings suggest that IDH1 tumor status plays a significant role in the 

organization of the brain’s network topology and the associated cognitive function of 

patients with malignant astrocytoma. These findings provide additional support for diffuse 

effects of focal brain lesions and suggest that lesions impacting the brain’s structural core 

may reduce its ability to adapt to the presence of the tumor. Further research in this area may 

reveal additional insights regarding cognitive function in individual patients with brain 

tumor including novel information regarding neuroplastic response to tumor infiltration.
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Fig. 1. 
Nodal (regional) efficiency. Patients with wild type tumor showed significantly (p < 0.05, 

FDR corrected) lower efficiency in multiple brain regions compared to mutant (blue) as well 

as one area of higher efficiency (purple). Color bar indicates log(p value). Regions are 

shown overlaid on a Montreal Neurological Institute 152 standard template from BrainNet 

Viewer [65]
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Fig. 2. 
Cumulative degree distribution power-law fit. Patients with mutant tumor demonstrated a 

good fit to the power-law (red line). However, patients with wild type tumor demonstrated a 

significantly poorer fit (p < 0.03) indicating fewer hubs and a disrupted information 

processing core
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Fig. 3. 
Predictors of cognitive impairment. Random forest classification indicated that global 

efficiency (arbitrary units) and education (years) were the most important predictors of 

cognitive impairment in patients with mutant tumor while tumor volume (cc cubic 

centimeters) was the greatest contributor to cognitive impairment in patients with wild type 

tumor
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Table 1

Demographic and medical data

IDH1 mutant IDH1 wild type Statistic p

Age 38.8 (11.2) 51.3 (14.3) 16.1 0.001

Education (years) 14.9 (1.8) 15.1 (2.5) 0.049 0.83

Male 51% 56% 0.156 0.70

Tumor

 Glioblastoma 17% 59% 12.7 0.001

 T1 volume (cubic centimeters) 65 (38) 39 (27) 10.3 0.001

 FLAIR volume (cubic centimeters) 81 (46) 70 (50) 0.793 0.38

 Left hemisphere 74% 66% 0.599 0.44

 Primary region (F, P, T)a 40, 9, 51% 53, 13, 34% 1.99 0.37

 Mulitifocal 53% 47% 0.494 0.48

Karnofsky performance scale 90–100 97% 72% 2.86 0.004

Karnofsky performance scale 70–80 3% 28% 2.87 0.004

Karnofsky performance scale <60 0% 0%

Data are shown as mean (standard deviation) unless otherwise noted

F frontal, P parietal, T temporal

a
Frontal p = 0.25, parietal p = 0.50, temporal p = 0.11
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Table 2

Cognitive tests

Test name Cognitive domain Normative data

Hopkins verbal learning test revised total recall Memory Benedict et al. [66]

Trail making test parts A&B Executive function, attention, processing speed Tombaugh [67]

Multilingual aphasia examination controlled oral word association Language, executive function Ruff et al. [68]

Multilingual aphasia examination token test Language Benton et al. [69]

Boston naming test Language Heaton [70]

WAIS-R/III Wechsler [71, 72]

 Digit span Attention

 Block design Visual-spatial

 Symbol search Processing speed

 Coding Processing speed

 Similarities Executive function

Grooved pegboard Motor Heaton [70]

Grip strength Motor Heaton [70]

WAIS-R/III Wechsler adult intelligence scale–revised or third edition
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Table 3

Cognitive and brain network data

IDH1 mutant IDH1 wild type Statistic p

Cognitive impairment 65% 84% 3.34 0.03

Testing interval (days) 0.61 (0.87) 1.9 (2.5) 396 0.02

MR field strength (1.5 T) 19% 38% 2.74 0.10

Global efficiency 0.756 (0.009) 0.750 (0.011) 3.96 0.05

Local efficiency 0.860 (0.007) 0.855 (0.008) 3.54 0.06

Network degree 4415 (191) 4287 (213) 4.27 0.04

Network size 8595 (95) 8557 (93) 0.172 0.68

Total brain volume (cubic centimeters) 1450 (127) 1417 (142) 2.12 0.15

Data are shown as mean (standard deviation) unless otherwise noted
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