Skip to main content

Advertisement

Log in

Measurements of heterogeneity in gliomas on computed tomography relationship to tumour grade

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

To undertake a preliminary study that uses CT texture analysis (CTTA) to quantify heterogeneity in gliomas on contrast-enhanced CT and to assess the relationship between tumour heterogeneity and grade. Retrospective analysis of contrast enhanced CT images was performed in 44 patients with histologically proven cerebral glioma between 2007 and 2010. 11 tumours were low grade (Grade I = 3; Grade II, = 8) and 33 high grade (Grade III = 10, Grade IV = 23). CTTA assessment of tumour heterogeneity was performed using a proprietary software algorithm (TexRAD) that selectively filters and extracts textures at different anatomical scales between filter values 1.0 (fine detail) and 2.5 (coarse features). Heterogeneity was quantified as standard deviation (SD) with or without filtration. Tumour heterogeneity, size and attenuation were correlated with tumour grade. For each parameter, receiver operating characteristics characterised the diagnostic performance for discrimination of high grade from low grade glioma and of grade III tumours from grade IV. Further the CTTA was compared to the radiological diagnosis. Tumour heterogeneity correlated significantly with grade (SD without filtration rs = 0.664, p < 0.001, SD with coarse filtration (rs = 0.714, p < 0.001). Tumour size and attenuation showed only moderate correlations with tumour grade (rs = 0.426, p = 0.004 and rs = 0.447, p = 0.002 respectively). Coarse texture was the best discriminator between high and low grade tumours (AUC 0.832, p < 0.0001) and between grade III and grade IV gliomas (AUC = 0.878 p = 0.0001). Compared to the radiological diagnosis, CTTA further characterised the indetermined cases. By quantifying tumour heterogeneity, CTTA has the potential to provide a marker of tumour grade for patients with cerebral glioma. By differentiating between high and low grade tumours, CTTA could possibly assist clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropahtol 114(2):97–109

    Article  Google Scholar 

  2. Weller M (2011) Novel diagnostic and therapeutic approaches to malignant glioma. Swiss Med Wkly. 24(141):w13210. doi:10.4414/smw.2011.13210

    Google Scholar 

  3. Siker ML, Chakravarti A, Mehta MP (2006) Should concomitant and adjuvant treatment with temozolomide be used as standard therapy in patients with anaplastic glioma? Critical reviews in Oncology-Haematology 60(2):99–111

    Article  Google Scholar 

  4. Theeler BJ, Groves MD (2011) High-grade gliomas. Curr Treat Options Neurol. 13(4):386–399

    Article  PubMed  Google Scholar 

  5. Server A, Kulle B, Gadmar OB et al (2010) Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol. doi: 10.1016/j.ejrad.2010.07.017

  6. Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E (2004) Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev 18:2095–2107

    Article  PubMed  CAS  Google Scholar 

  7. Arogundade RA, Awosanya GO, Ariqbabu SO (2006) Role of computer tomography in the management of adult brain tumours. Niger Postgrad Med J. 13(2):123–127

    PubMed  CAS  Google Scholar 

  8. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles KA (2012) Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 22(4):796–802

    Article  PubMed  Google Scholar 

  9. Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles KA (2012) Tumour heterogeneity in oesophageal cancer assessed by CT Texture Analysis: preliminary evidence of an association with tumour metabolism, stage and survival. Clin Radiol 67(2):157–164

    Article  PubMed  CAS  Google Scholar 

  10. Goh V, Ganeshan B, Nathan P, Juttla J, Vinayan A, Miles KA (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261(1):165–171

    Article  PubMed  Google Scholar 

  11. Ganeshan B, Abaleke SC, Young RCD, Chatwin CR, Miles KA (2010) Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 6(10):137–143

    Article  Google Scholar 

  12. Miles KA, Ganeshan B, Griffiths MR, Young RC, Chatwin CR (2009) Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology 250(2):444–452

    Article  PubMed  Google Scholar 

  13. Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) In search of biologic correlates for liver texture on portal-phase CT. Acad Radiol. 14(9):1058–1068

    Article  PubMed  Google Scholar 

  14. Kojima S, YoshitomiY Yano M et al (2000) Heterogeneity of renal cortical circulation in hypertension assessed by dynamic computed tomography. Am J Hypertens 13(4 PT 1):346–352

    Article  PubMed  CAS  Google Scholar 

  15. Ganeshan B, Ziauddin Z, Goh VJ, Rodriguez-Just0 M, Engledow A, Taylor S, Halligan S, Miles KA 2012 Quantitative imaging biomarkers from PET–CT as potential correlates for angiogenesis and hypoxia in colorectal cancer. In: European Society of Radiology Conference 2012, Vienna, Austria

  16. Zagzag D, Goldenberg M, Brem S (1989) Angiogenesis and blood-brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model. Am J Roentgenol 153:141–146

    CAS  Google Scholar 

  17. Tervonen O, Forbes G, Scheithauer BW et al (1992) Diffuse “fibrillary” astrocytomas: correlation of MRI features with histopathologic parameters and tumour grade. Neuroradiology 34:173–178

    Article  PubMed  CAS  Google Scholar 

  18. Moller-Hartmann W, Herminghaus S, Krings T et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381

    Article  PubMed  CAS  Google Scholar 

  19. Dean BL, Drayer BP, Bird CR et al (1990) Glioma classification with MR imaging. Radiology 174:411–415

    PubMed  CAS  Google Scholar 

  20. Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469

    Article  PubMed  CAS  Google Scholar 

  21. Kondziolka D, Lunsford LD, Martinez AJ (1993) Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low Grade) astrocytoma. J Neurosurg 79(4):533–536

    Article  PubMed  CAS  Google Scholar 

  22. Christofordis GA, Grecula JC, Newton HB et al (2002) Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. AM J Neuroradiol 23:1553–1556

    Google Scholar 

  23. Assefa D, Keller H, Ménard C, Laperriere N, Ferrari RJ, Yeung I (2010) Robust texture features for response monitoring of glioblastoma multiforme onT1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation. Med Phys 37(4):1722–1736

    Article  PubMed  Google Scholar 

  24. Drabycz S, Roldán G, de Robles P, Adler D, McIntyre JB, Magliocco AM, Cairncross JG, Mitchell JR (2010) An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49(2):1398–1405

    Article  PubMed  CAS  Google Scholar 

  25. Levner I, Drabycz S, Roldan G, De Robles P, Cairncross JG, Mitchell R (2009) Predicting MGMT methylation status of glioblastomas from MRI texture. Med Image Comput Comput Assist Interv. 12(Pt 2):522–530

    PubMed  Google Scholar 

  26. Mahmoud-Ghoneim D, Alkaabi MK, de Certaines JD, Goettsche FM (2008) The impact of image dynamic range on texture classification of brain white matter. BMC Med Imaging 23(8):18

    Article  Google Scholar 

  27. Georgiadis P, Cavouras D, Kalatzis I, Glotsos D, Athanasiadis E, Kostopoulos S, Sifaki K, Malamas M, Nikiforidis G, Solomou E (2009) Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods. Magn Reson Imaging 27(1):120–130

    Article  PubMed  Google Scholar 

  28. Mahmoud-Ghoneim D, Toussaint G, Constans JM, de Certaines JD (2003) Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn Reson Imaging 21(9):983–987

    Article  PubMed  Google Scholar 

  29. Schad LR, Blüml S, Zuna I (1993) MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging 11(6):889–896

    Article  PubMed  CAS  Google Scholar 

  30. Ganeshan B, Miles KA, Young RC, Chatwin CR (2008) Three-dimensional selective-scale texture analysis of computed tomography pulmonary angiograms. Invest Radiol 43(6):382–394

    Article  PubMed  Google Scholar 

  31. Ng F, Ganeshan B, Miles KA, Goh V 2012 Assessment of tumor heterogeneity by CT texture analysis: Comparison of the largest cross-sectional area versus whole tumor analysis. In: The European Society of Radiology Conference 2012, Vienna, Austria

Download references

Conflict of interests

Balaji Ganeshan and Kenneth Miles have a commercial interest in the tumor textural analysis software (‘TexRAD’) described in this manuscript. There are no other author disclosures. All other authors had control of the data and information submitted for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoline Skogen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skogen, K., Ganeshan, B., Good, C. et al. Measurements of heterogeneity in gliomas on computed tomography relationship to tumour grade. J Neurooncol 111, 213–219 (2013). https://doi.org/10.1007/s11060-012-1010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-1010-5

Keywords

Navigation